BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31494329)

  • 1. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part I: An overview of synthetic strategies.
    Stasińska AR; Putaj P; Chmielewski MK
    Bioorg Chem; 2019 Nov; 92():103223. PubMed ID: 31494329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications.
    Stasińska AR; Putaj P; Chmielewski MK
    Bioorg Chem; 2020 Jan; 95():103518. PubMed ID: 31911308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfide conjugation of peptides to oligonucleotides and their analogs.
    Turner JJ; Williams D; Owen D; Gait MJ
    Curr Protoc Nucleic Acid Chem; 2006 Apr; Chapter 4():Unit 4.28. PubMed ID: 18428958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of a Convertible Linker Containing a Disulfide Group for Oligonucleotide Functionalization.
    Pontarelli A; Liu JT; Movasat H; Ménard S; Oh JK; Wilds CJ
    Org Lett; 2022 Aug; 24(30):5579-5583. PubMed ID: 35863757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering disulfide cross-links in RNA using thiol-disulfide interchange chemistry.
    Cohen SB; Cech TR
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 5():Unit 5.1. PubMed ID: 18428857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles.
    De Stefano M; Vesterager Gothelf K
    Chembiochem; 2016 Jun; 17(12):1122-6. PubMed ID: 26994867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of DNA and RNA fragments containing guanine N(2)-thioalkyl tethers.
    Hou X; Wang G; Gaffney BL; Jones RA
    Curr Protoc Nucleic Acid Chem; 2010 Jun; Chapter 5():Unit 5.8. PubMed ID: 20517990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of a Modular "Catch and Release" Hydrogel Interface: Harnessing Thiol-Disulfide Exchange for Reversible Protein Capture and Cell Attachment.
    Gevrek TN; Cosar M; Aydin D; Kaga E; Arslan M; Sanyal R; Sanyal A
    ACS Appl Mater Interfaces; 2018 May; 10(17):14399-14409. PubMed ID: 29637775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tethering in RNA: an RNA-binding fragment discovery tool.
    Tran K; Arkin MR; Beal PA
    Molecules; 2015 Mar; 20(3):4148-61. PubMed ID: 25749683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide-Mediated Bioconjugation: Disulfide Formation and Restructuring on the Surface of Nanomanufactured (Microfluidics) Nanoparticles.
    Geven M; Luo H; Koo D; Panambur G; Donno R; Gennari A; Marotta R; Grimaldi B; Tirelli N
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26607-26618. PubMed ID: 31282644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates.
    Letsinger RL; Elghanian R; Viswanadham G; Mirkin CA
    Bioconjug Chem; 2000; 11(2):289-91. PubMed ID: 10725107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides.
    Egli M; Pallan PS
    Annu Rev Biophys Biomol Struct; 2007; 36():281-305. PubMed ID: 17288535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery.
    Dutta K; Das R; Medeiros J; Thayumanavan S
    Biochemistry; 2021 Apr; 60(13):966-990. PubMed ID: 33428850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudo-Ligandless Click Chemistry for Oligonucleotide Conjugation.
    Mack S; Fouz MF; Dey SK; Das SR
    Curr Protoc Chem Biol; 2016 Jun; 8(2):83-95. PubMed ID: 27258688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the linker type on the Au-S binding properties of thiol and disulfide-modified DNA self-assembly on polycrystalline gold.
    Martínez L; Carrascosa LG; Huttel Y; Lechuga LM; Román E
    Phys Chem Chem Phys; 2010 Apr; 12(13):3301-8. PubMed ID: 20237723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural arrangement of DNA constrained by a cross-linker.
    Endo M; Majima T
    Org Biomol Chem; 2005 Oct; 3(19):3476-8. PubMed ID: 16172682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge.
    Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S
    Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of double-stranded oligonucleotides using backbone-linked disulfide bridges.
    Gao H; Yang M; Cook AF
    Nucleic Acids Res; 1995 Jan; 23(2):285-92. PubMed ID: 7862534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds.
    Marculescu C; Kossen H; Morgan RE; Mayer P; Fletcher SA; Tolner B; Chester KA; Jones LH; Baker JR
    Chem Commun (Camb); 2014 Jul; 50(54):7139-42. PubMed ID: 24853662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of disulfide bond to the main chain of PNA to switch its hybridization and invasion activity.
    Aiba Y; Komiyama M
    Org Biomol Chem; 2009 Dec; 7(24):5078-83. PubMed ID: 20024101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.