BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31494536)

  • 21. Conformational studies of chiral D-Lys-PNA and achiral PNA system in binding with DNA or RNA through a molecular dynamics approach.
    Autiero I; Saviano M; Langella E
    Eur J Med Chem; 2015 Feb; 91():109-17. PubMed ID: 25112690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization factors affecting duplex formation of peptide nucleic acid with DNA.
    Sugimoto N; Satoh N; Yasuda K; Nakano S
    Biochemistry; 2001 Jul; 40(29):8444-51. PubMed ID: 11456481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca, Cd, Zn, and their ions interacting with Cytosine: a theoretical study.
    Vazquez MV; Martínez A
    J Phys Chem A; 2007 Oct; 111(39):9931-9. PubMed ID: 17850047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles.
    Faller P; Hureau C; La Penna G
    Acc Chem Res; 2014 Aug; 47(8):2252-9. PubMed ID: 24871565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gamma-radiation induced interstrand cross-links in PNA:DNA heteroduplexes.
    Gantchev TG; Girouard S; Dodd DW; Wojciechowski F; Hudson RH; Hunting DJ
    Biochemistry; 2009 Jul; 48(29):7032-44. PubMed ID: 19469551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orientation preferences of backbone secondary amide functional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic D-amino acid-based chiral PNA analogues for the P-form.
    Topham CM; Smith JC
    Biophys J; 2007 Feb; 92(3):769-86. PubMed ID: 17071666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the structural features and stability of peptide nucleic acid with a D-prolyl-2-aminocyclopentane carboxylic acid backbone that binds to DNA and RNA.
    Poomsuk N; Vilaivan T; Siriwong K
    J Mol Graph Model; 2018 Sep; 84():36-42. PubMed ID: 29909272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitating mismatch discrimination by surface-affixed PNA probes via ionic regulation.
    Ghosh S; Mishra S; Banerjee T; Mukhopadhyay R
    Langmuir; 2013 Mar; 29(10):3370-9. PubMed ID: 23414328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterization of a triplex DNA-PNA/DNA/DNA.
    Petraccone L; Erra E; Messere A; Montesarchio D; Piccialli G; De Napoli L; Barone G; Giancola C
    Biopolymers; 2004 Mar; 73(4):434-42. PubMed ID: 14991660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications.
    Vilaivan T
    Acc Chem Res; 2015 Jun; 48(6):1645-56. PubMed ID: 26022340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strand displacement recognition of mixed adenine-cytosine sequences in double stranded DNA by thymine-guanine PNA (peptide nucleic acid).
    Nielsen PE; Egholm M
    Bioorg Med Chem; 2001 Sep; 9(9):2429-34. PubMed ID: 11553484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability.
    Joshi T; Barbante GJ; Francis PS; Hogan CF; Bond AM; Gasser G; Spiccia L
    Inorg Chem; 2012 Mar; 51(5):3302-15. PubMed ID: 22339152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2'-bipyridine and a chalcone derivative.
    Gaur R; Choubey DK; Usman M; Ward BD; Roy JK; Mishra L
    J Photochem Photobiol B; 2017 Aug; 173():650-660. PubMed ID: 28711020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.
    Jasiński M; Feig M; Trylska J
    J Chem Theory Comput; 2018 Jul; 14(7):3603-3620. PubMed ID: 29791152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates.
    Kaihatsu K; Shah RH; Zhao X; Corey DR
    Biochemistry; 2003 Dec; 42(47):13996-4003. PubMed ID: 14636068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the Backbone and Chemical Linker on the Molecular Conductance of Nucleic Acid Duplexes.
    Beall E; Ulku S; Liu C; Wierzbinski E; Zhang Y; Bae Y; Zhang P; Achim C; Beratan DN; Waldeck DH
    J Am Chem Soc; 2017 May; 139(19):6726-6735. PubMed ID: 28434220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition metal derivatives of peptide nucleic acid (PNA) oligomers-synthesis, characterization, and DNA binding.
    Verheijen JC; van Der Marel GA; van Boom JH; Metzler-Nolte N
    Bioconjug Chem; 2000; 11(6):741-3. PubMed ID: 11087319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.