These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31494555)

  • 1. Ranked k-Spectrum Kernel for Comparative and Evolutionary Comparison of Exons, Introns, and CpG Islands.
    Lee S; Lee T; Noh YK; Kim S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1174-1183. PubMed ID: 31494555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis using K-mer and K-flank patterns provides evidence for CpG island sequence evolution in mammalian genomes.
    Chae H; Park J; Lee SW; Nephew KP; Kim S
    Nucleic Acids Res; 2013 May; 41(9):4783-91. PubMed ID: 23519616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary implications of intron-exon distribution and the properties and sequences of the RPL10A gene in eukaryotes.
    Del Campo EM; Casano LM; Barreno E
    Mol Phylogenet Evol; 2013 Mar; 66(3):857-67. PubMed ID: 23201395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting chromatin organization of CpG islands and exons in the human genome.
    Choi JK
    Genome Biol; 2010; 11(7):R70. PubMed ID: 20602769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K-mer-Based Motif Analysis in Insect Species across
    Cserhati M; Xiao P; Guda C
    Comput Math Methods Med; 2019; 2019():4259479. PubMed ID: 31827584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of intron length on exon creation ratios during the evolution of mammalian genomes.
    Roy M; Kim N; Xing Y; Lee C
    RNA; 2008 Nov; 14(11):2261-73. PubMed ID: 18796579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome phylogeny of mammals: evolutionary information in genic and nongenic regions.
    Sims GE; Jun SR; Wu GA; Kim SH
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17077-82. PubMed ID: 19805074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.
    Mohamed Hashim EK; Abdullah R
    J Theor Biol; 2015 Dec; 387():88-100. PubMed ID: 26427337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the evolution dynamics of exon-intron structure with a general random fragmentation process.
    Wang L; Stein LD
    BMC Evol Biol; 2013 Feb; 13():57. PubMed ID: 23448166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intron-loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Hiroi J; Miya M; Nishida M; Iuchi I; Yasumasu S
    BMC Evol Biol; 2010 Aug; 10():260. PubMed ID: 20796321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated entropy-based approach for analyzing exons and introns in DNA sequences.
    Li J; Zhang L; Li H; Ping Y; Xu Q; Wang R; Tan R; Wang Z; Liu B; Wang Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):283. PubMed ID: 31182012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters.
    Wu Q; Zhang T; Cheng JF; Kim Y; Grimwood J; Schmutz J; Dickson M; Noonan JP; Zhang MQ; Myers RM; Maniatis T
    Genome Res; 2001 Mar; 11(3):389-404. PubMed ID: 11230163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic organization of the human NFAT5 gene: exon-intron structure of the 14-kb transcript and CpG-island analysis of the promoter region.
    Dalski A; Schwinger E; Zühlke C
    Cytogenet Cell Genet; 2001; 93(3-4):239-41. PubMed ID: 11528118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary divergence of exon flanks: a dissection of mutability and selection.
    Xing Y; Wang Q; Lee C
    Genetics; 2006 Jul; 173(3):1787-91. PubMed ID: 16702427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exon-intron structure and evolution of the Lipocalin gene family.
    Sánchez D; Ganfornina MD; Gutiérrez G; Marín A
    Mol Biol Evol; 2003 May; 20(5):775-83. PubMed ID: 12679526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes.
    Li C; Riethoven JJ; Ma L
    BMC Evol Biol; 2010 Mar; 10():90. PubMed ID: 20353608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of polymorphism of the HLA class I non-coding regions and their contribution to the diversification of HLA.
    Blasczyk R; Kotsch K; Wehling J
    Hereditas; 1997; 127(1-2):7-9. PubMed ID: 9471425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of CpG islands within the myc gene family.
    Miyamoto MM; Freire NP
    Mol Phylogenet Evol; 2000 Sep; 16(3):475-81. PubMed ID: 10991799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and mapping of the human lanosterol 14alpha-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes.
    Rozman D; Strömstedt M; Tsui LC; Scherer SW; Waterman MR
    Genomics; 1996 Dec; 38(3):371-81. PubMed ID: 8975714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.