These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs. Thelitz S; Bekker JM; Ovadia B; Stuart RB; Johengen MJ; Black SM; Fineman JR J Thorac Cardiovasc Surg; 2004 May; 127(5):1285-92. PubMed ID: 15115984 [TBL] [Abstract][Full Text] [Related]
9. Soluble guanylate cyclase activator BAY 54-6544 improves vasomotor function and survival in an accelerated ageing mouse model. Ataei Ataabadi E; Golshiri K; Jüttner AA; de Vries R; Van den Berg-Garrelds I; Nagtzaam NMA; Khan HN; Leijten FPJ; Brandt RMC; Dik WA; van der Pluijm I; Danser AHJ; Sandner P; Roks AJM Aging Cell; 2022 Sep; 21(9):e13683. PubMed ID: 36029161 [TBL] [Abstract][Full Text] [Related]
10. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Krishnan SM; Kraehling JR; Eitner F; Bénardeau A; Sandner P Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29890734 [TBL] [Abstract][Full Text] [Related]
11. What is next in nitric oxide research? From cardiovascular system to cancer biology. Bian K; Murad F Nitric Oxide; 2014 Dec; 43():3-7. PubMed ID: 25153032 [TBL] [Abstract][Full Text] [Related]
12. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Dupont LL; Glynos C; Bracke KR; Brouckaert P; Brusselle GG Pulm Pharmacol Ther; 2014 Oct; 29(1):1-6. PubMed ID: 25043200 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease. Boerrigter G; Burnett JC Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086 [TBL] [Abstract][Full Text] [Related]
14. The Potential of sGC Modulators for the Treatment of Age-Related Fibrosis: A Mini-Review. Sandner P; Berger P; Zenzmaier C Gerontology; 2017; 63(3):216-227. PubMed ID: 27784018 [TBL] [Abstract][Full Text] [Related]
15. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Sandner P; Stasch JP Respir Med; 2017 Jan; 122 Suppl 1():S1-S9. PubMed ID: 28341058 [TBL] [Abstract][Full Text] [Related]
16. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Kraehling JR; Sessa WC Circ Res; 2017 Mar; 120(7):1174-1182. PubMed ID: 28360348 [TBL] [Abstract][Full Text] [Related]
17. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling. Gao Y J Cardiovasc Pharmacol; 2016 May; 67(5):367-72. PubMed ID: 26452163 [TBL] [Abstract][Full Text] [Related]
18. Halothane and isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine monophosphate accumulation in endothelial cell-vascular smooth muscle co-cultures independent of an effect on guanylyl cyclase activation. Johns RA; Tichotsky A; Muro M; Spaeth JP; Le Cras TD; Rengasamy A Anesthesiology; 1995 Oct; 83(4):823-34. PubMed ID: 7574063 [TBL] [Abstract][Full Text] [Related]
19. Identification of downstream target genes regulated by the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate signal pathway in pulmonary hypertension. Zou L; Xu X; Zhai Z; Yang T; Jin J; Xiao F; Wang C J Int Med Res; 2016 Jun; 44(3):508-19. PubMed ID: 27048385 [TBL] [Abstract][Full Text] [Related]
20. A primer for measuring cGMP signaling and cGMP-mediated vascular relaxation. Straub AC; Beuve A Nitric Oxide; 2021 Dec; 117():40-45. PubMed ID: 34601102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]