These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31495221)

  • 1. Diurnal and circadian variations in intraocular pressure in goats exposed to different lighting conditions.
    Ziółkowska N; Ziółkowski H; Magda J; Bućko M; Kaczorek-Łukowska E; Lewczuk B
    Chronobiol Int; 2019 Dec; 36(12):1638-1645. PubMed ID: 31495221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian intraocular pressure rhythms in athletic horses under different lighting regime.
    Bertolucci C; Giudice E; Fazio F; Piccione G
    Chronobiol Int; 2009 Feb; 26(2):348-58. PubMed ID: 19212846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ambient Lighting on Intraocular Pressure Rhythms in Rats.
    Nicou CM; Passaglia CL
    Invest Ophthalmol Vis Sci; 2024 Aug; 65(10):16. PubMed ID: 39115866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythm of intraocular pressure in cats.
    Del Sole MJ; Sande PH; Bernades JM; Aba MA; Rosenstein RE
    Vet Ophthalmol; 2007; 10(3):155-61. PubMed ID: 17445076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The daily rhythms of melatonin and free fatty acids in goats under varying photoperiods and constant darkness.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Chronobiol Int; 2006; 23(3):565-81. PubMed ID: 16753942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of light cycle on 24-hour pattern of mouse intraocular pressure.
    Sugimoto E; Aihara M; Ota T; Araie M
    J Glaucoma; 2006 Dec; 15(6):505-11. PubMed ID: 17106363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of intraocular pressure in healthy unanesthetized inland bearded dragons (Pogona vitticeps).
    Schuster EJ; Strueve J; Fehr MJ; Mathes KA
    Am J Vet Res; 2015 Jun; 76(6):494-9. PubMed ID: 26000596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of different artificial lighting regimes on intraocular pressure circadian profile in the dog (Canis familiaris).
    Piccione G; Giannetto C; Fazio F; Giudice E
    Exp Anim; 2010; 59(2):215-23. PubMed ID: 20484855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocuton-S self tonometry vs. Goldmann tonometry; a diurnal comparison study.
    Kóthy P; Vargha P; Holló G
    Acta Ophthalmol Scand; 2001 Jun; 79(3):294-7. PubMed ID: 11401642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Beta-Adrenergic Receptors in the Regulation of Circadian Intraocular Pressure Rhythm in Mice.
    Tsuchiya S; Higashide T; Toida K; Sugiyama K
    Curr Eye Res; 2017 Jul; 42(7):1013-1017. PubMed ID: 28121174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian intraocular pressure rhythm is generated by clock genes.
    Maeda A; Tsujiya S; Higashide T; Toida K; Todo T; Ueyama T; Okamura H; Sugiyama K
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4050-2. PubMed ID: 16936122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agreement between diurnal variations of intraocular pressure by Tono-Pen and Goldmann applanation tonometer in patients on topical anti-glaucoma medication.
    Gupta S; Sinha G; Sharma R; Nayak B; Patil B; Kashyap B; Shameer A; Dada T
    Int Ophthalmol; 2016 Feb; 36(1):9-15. PubMed ID: 25820518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.
    Fahrenkrug J; Georg B; Hannibal J; Jørgensen HL
    Exp Eye Res; 2018 Apr; 169():134-140. PubMed ID: 29428294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily and annual variations of free fatty acid, glycerol and leptin plasma concentrations in goats (Capra hircus) under different photoperiods.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):119-31. PubMed ID: 15275646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythm of intraocular pressure: a rat model.
    Krishna R; Mermoud A; Baerveldt G; Minckler DS
    Ophthalmic Res; 1995; 27(3):163-7. PubMed ID: 8538994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal Intraocular Pressure and the Relationship With Swept-Source OCT-Derived Anterior Chamber Dimensions in Angle Closure: The IMPACT Study.
    Sanchez-Parra L; Pardhan S; Buckley RJ; Parker M; Bourne RR
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2943-9. PubMed ID: 26024080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythm of intraocular pressure in the rat.
    Moore CG; Johnson EC; Morrison JC
    Curr Eye Res; 1996 Feb; 15(2):185-91. PubMed ID: 8670727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between diurnal variations in intraocular pressure measurements and central corneal thickness and corneal hysteresis.
    Kotecha A; Crabb DP; Spratt A; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4229-36. PubMed ID: 19407025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT).
    Chung KY; Woo SJ; Yi S; Choi GH; Ahn CH; Hur GC; Lim JG; Kim TW
    J Glaucoma; 2011 Oct; 20(8):488-91. PubMed ID: 21968970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.