These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31495263)

  • 1. Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from
    Ghanbariasad A; Taghizadeh SM; Show PL; Nomanbhay S; Berenjian A; Ghasemi Y; Ebrahiminezhad A
    Bioengineered; 2019 Dec; 10(1):390-396. PubMed ID: 31495263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-controlled synthesis of rod-like α-FeOOH nanostructure.
    Wei C; Qiao P; Nan Z
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1524-30. PubMed ID: 24364955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles.
    Mäkie P; Persson P; Österlund L
    J Colloid Interface Sci; 2013 Feb; 392():349-358. PubMed ID: 23142013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH).
    Morris RV; Lauer HV; Lawson CA; Gibson EK; Nace GA; Stewart C
    J Geophys Res; 1985 Mar; 90(B4):3126-44. PubMed ID: 11542003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract.
    Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D
    J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method.
    Lunin AV; Kolychev EL; Mochalova EN; Cherkasov VR; Nikitin MP
    J Colloid Interface Sci; 2019 Apr; 541():143-149. PubMed ID: 30685609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.
    Nieto-Juarez JI; Kohn T
    Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
    Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK
    Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract.
    Mahdavi M; Namvar F; Ahmad MB; Mohamad R
    Molecules; 2013 May; 18(5):5954-64. PubMed ID: 23698048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures.
    Iijima M; Yonemochi Y; Tsukada M; Kamiya H
    J Colloid Interface Sci; 2006 Jun; 298(1):202-8. PubMed ID: 16386266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite.
    Lu MC
    Chemosphere; 2000 Jan; 40(2):125-30. PubMed ID: 10665425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the Alcoholic/Ethanolic Extract of
    Bautista-Guzman J; Gomez-Morales R; Asmat-Campos D; Checca NR
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of iron oxide nanoparticles over a wide size range.
    Guardia P; Pérez N; Labarta A; Batlle X
    Langmuir; 2010 Apr; 26(8):5843-7. PubMed ID: 20000725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.
    Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C
    J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature preparation of α-FeOOH/reduced graphene oxide and its catalytic activity for the photodegradation of an organic dye.
    Huang G; Zhang C; Long Y; Wynn J; Liu Y; Wang W; Gao J
    Nanotechnology; 2013 Oct; 24(39):395601. PubMed ID: 24008350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technetium Incorporation into Goethite (α-FeOOH): An Atomic-Scale Investigation.
    Smith FN; Taylor CD; Um W; Kruger AA
    Environ Sci Technol; 2015 Nov; 49(22):13699-707. PubMed ID: 26513333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.
    Park JA; Kim SB
    J Contam Hydrol; 2015 Oct; 181():131-40. PubMed ID: 25704059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria.
    da Silva Ferreira V; ConzFerreira ME; Lima LM; Frasés S; de Souza W; Sant'Anna C
    Enzyme Microb Technol; 2017 Feb; 97():114-121. PubMed ID: 28010768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.