These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31495263)

  • 21. Characterization and field emission performance of electrochemically synthesized FeOOH nanowalls.
    Chin KC; Cui H; Sow CH; Sheu FS; Van Li H; Gao X; Wee AT
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3301-6. PubMed ID: 18019164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Annealing effects on 5 nm iron oxide nanoparticles.
    Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abiotic degradation of pentachloronitrobenzene by Fe(III): reactions on goethite and iron oxide nanoparticles.
    Klupinski TP; Chin YP; Traina SJ
    Environ Sci Technol; 2004 Aug; 38(16):4353-60. PubMed ID: 15382864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro cytotoxicity of transparent yellow iron oxide nanoparticles on human glioma cells.
    Wang Y; Zhu MT; Wang B; Wang M; Wang HJ; OuYang H; Feng WY
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8550-5. PubMed ID: 21121365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions.
    Park JA; Kim SB; Lee CG; Lee SH; Choi JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(10):1116-24. PubMed ID: 24844892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces.
    Cagnasso M; Boero V; Franchini MA; Chorover J
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):456-67. PubMed ID: 20074916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial bioreporter detection of arsenic associated with iron oxides.
    van Genuchten CM; Finger A; van der Meer JR; Peña J
    Environ Sci Process Impacts; 2018 Jun; 20(6):913-922. PubMed ID: 29850698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities.
    Deshmukh AR; Gupta A; Kim BS
    Biomed Res Int; 2019; 2019():1714358. PubMed ID: 31080808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage.
    Klem MT; Mosolf J; Young M; Douglas T
    Inorg Chem; 2008 Apr; 47(7):2237-9. PubMed ID: 18307300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions.
    Sipos P; Berkesi O; Tombácz E; St Pierre TG; Webb J
    J Inorg Biochem; 2003 May; 95(1):55-63. PubMed ID: 12706542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles.
    Wang Z; Zhu H; Wang X; Yang F; Yang X
    Nanotechnology; 2009 Nov; 20(46):465606. PubMed ID: 19847022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.
    Wang D; Jin Y; Jaisi DP
    Environ Sci Technol; 2015 Jul; 49(14):8461-70. PubMed ID: 26084013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces.
    Song X; Boily JF
    Phys Chem Chem Phys; 2012 Feb; 14(8):2579-86. PubMed ID: 22261841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for non-electrostatic interactions between a pyrophosphate-functionalized uranyl peroxide nanocluster and iron (hydr)oxide minerals.
    Sadergaski LR; Perry SN; Tholen LR; Hixon AE
    Environ Sci Process Impacts; 2019 Jul; 21(7):1174-1183. PubMed ID: 31187835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound assisted phytosynthesis of iron oxide nanoparticle.
    Sathya K; Saravanathamizhan R; Baskar G
    Ultrason Sonochem; 2017 Nov; 39():446-451. PubMed ID: 28732967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of aligned hematite nanoparticles on chitosan-alginate films.
    Sreeram KJ; Nidhin M; Nair BU
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):260-7. PubMed ID: 19303261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-algal activity of Fe
    Baniamerian H; Tsapekos P; Alvarado-Morales M; Shokrollahzadeh S; Safavi M; Angelidaki I
    Chemosphere; 2020 Mar; 242():125119. PubMed ID: 31677511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition.
    Belaïd S; Laurent S; Vermeech M; Vander Elst L; Perez-Morga D; Muller RN
    Nanotechnology; 2013 Feb; 24(5):055705. PubMed ID: 23306107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis.
    Bomatí-Miguel O; Tartaj P; Morales MP; Bonville P; Golla-Schindler U; Zhao XQ; Veintemillas-Verdaguer S
    Small; 2006 Dec; 2(12):1476-83. PubMed ID: 17193009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.