These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 31495299)
41. Rapid increase of 'brain-type' transferrin in cerebrospinal fluid after shunt surgery for idiopathic normal pressure hydrocephalus: a prognosis marker for cognitive recovery. Murakami Y; Matsumoto Y; Hoshi K; Ito H; Fuwa TJ; Yamaguchi Y; Nakajima M; Miyajima M; Arai H; Nollet K; Kato N; Nishikata R; Kuroda N; Honda T; Sakuma J; Saito K; Hashimoto Y J Biochem; 2018 Sep; 164(3):205-213. PubMed ID: 29701803 [TBL] [Abstract][Full Text] [Related]
42. Impact of cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus on the amyloid cascade. Moriya M; Miyajima M; Nakajima M; Ogino I; Arai H PLoS One; 2015; 10(3):e0119973. PubMed ID: 25821958 [TBL] [Abstract][Full Text] [Related]
43. Distinct volumetric features of cerebrospinal fluid distribution in idiopathic normal-pressure hydrocephalus and Alzheimer's disease. Han J; Kim MN; Lee HW; Jeong SY; Lee SW; Yoon U; Kang K Fluids Barriers CNS; 2022 Sep; 19(1):66. PubMed ID: 36045420 [TBL] [Abstract][Full Text] [Related]
44. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. Melin E; Pripp AH; Eide PK; Ringstad G JCI Insight; 2023 Dec; 8(23):. PubMed ID: 38063195 [TBL] [Abstract][Full Text] [Related]
45. The role of cerebrospinal fluid flow study using phase contrast MR imaging in diagnosing idiopathic normal pressure hydrocephalus. Al-Zain FT; Rademacher G; Meier U; Mutze S; Lemcke J Acta Neurochir Suppl; 2008; 102():119-23. PubMed ID: 19388301 [TBL] [Abstract][Full Text] [Related]
46. Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer's Disease. Municio C; Carrero L; Antequera D; Carro E Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614315 [TBL] [Abstract][Full Text] [Related]
48. Cerebrospinal Fluid Production and Absorption and Ventricular Enlargement Mechanisms in Hydrocephalus. Yamada S; Mase M Neurol Med Chir (Tokyo); 2023 Apr; 63(4):141-151. PubMed ID: 36858632 [TBL] [Abstract][Full Text] [Related]
49. Clinical significance of cerebrospinal fluid tap test and magnetic resonance imaging/computed tomography findings of tight high convexity in patients with possible idiopathic normal pressure hydrocephalus. Ishikawa M; Oowaki H; Matsumoto A; Suzuki T; Furuse M; Nishida N Neurol Med Chir (Tokyo); 2010; 50(2):119-23; disucussion 123. PubMed ID: 20185875 [TBL] [Abstract][Full Text] [Related]
51. Single-stage bilateral choroid plexectomy for choroid plexus papilloma in a patient presenting with high cerebrospinal fluid output. Nimjee SM; Powers CJ; McLendon RE; Grant GA; Fuchs HE J Neurosurg Pediatr; 2010 Apr; 5(4):342-5. PubMed ID: 20367337 [TBL] [Abstract][Full Text] [Related]
52. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan. Eisma JJ; McKnight CD; Hett K; Elenberger J; Han CJ; Song AK; Considine C; Claassen DO; Donahue MJ Fluids Barriers CNS; 2024 Feb; 21(1):21. PubMed ID: 38424598 [TBL] [Abstract][Full Text] [Related]
53. Radiographic markers of clinical outcomes after endoscopic third ventriculostomy with choroid plexus cauterization: cerebrospinal fluid turbulence and choroid plexus visualization. Pindrik J; Rocque BG; Arynchyna AA; Johnston JM; Rozzelle CJ J Neurosurg Pediatr; 2016 Sep; 18(3):287-95. PubMed ID: 27177081 [TBL] [Abstract][Full Text] [Related]
54. Two-Point Dynamic Observation of Alzheimer's Disease Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus. Jingami N; Uemura K; Asada-Utsugi M; Kuzuya A; Yamada S; Ishikawa M; Kawahara T; Iwasaki T; Atsuchi M; Takahashi R; Kinoshita A J Alzheimers Dis; 2019; 72(1):271-277. PubMed ID: 31561378 [TBL] [Abstract][Full Text] [Related]
56. Cerebrospinal fluid dynamics in idiopathic normal pressure hydrocephalus on four-dimensional flow imaging. Yamada S; Ishikawa M; Ito H; Yamamoto K; Yamaguchi M; Oshima M; Nozaki K Eur Radiol; 2020 Aug; 30(8):4454-4465. PubMed ID: 32246220 [TBL] [Abstract][Full Text] [Related]
57. Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Anei R; Hayashi Y; Hiroshima S; Mitsui N; Orimoto R; Uemori G; Saito M; Sato M; Wada H; Hododuka A; Kamada K Neurol Med Chir (Tokyo); 2011; 51(6):437-41. PubMed ID: 21701109 [TBL] [Abstract][Full Text] [Related]
58. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. Wang Z; Zhang Y; Hu F; Ding J; Wang X CNS Neurosci Ther; 2020 Dec; 26(12):1230-1240. PubMed ID: 33242372 [TBL] [Abstract][Full Text] [Related]
59. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus. Yin LK; Zheng JJ; Zhao L; Hao XZ; Zhang XX; Tian JQ; Zheng K; Yang YM Acta Neurol Scand; 2017 Nov; 136(5):434-439. PubMed ID: 28247411 [TBL] [Abstract][Full Text] [Related]
60. Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. Dreyer LW; Eklund A; Rognes ME; Malm J; Qvarlander S; Støverud KH; Mardal KA; Vinje V Fluids Barriers CNS; 2024 Oct; 21(1):82. PubMed ID: 39407250 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]