BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31495858)

  • 1. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chim Acta; 2023 Jan; 1239():340742. PubMed ID: 36628735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing.
    Phan HV; Coşkun MB; Şeşen M; Pandraud G; Neild A; Alan T
    Lab Chip; 2015 Nov; 15(21):4206-16. PubMed ID: 26381355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acoustofluidic micromixer based on oscillating sidewall sharp-edges.
    Huang PH; Xie Y; Ahmed D; Rufo J; Nama N; Chen Y; Chan CY; Huang TJ
    Lab Chip; 2013 Oct; 13(19):3847-52. PubMed ID: 23896797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic confined acoustic streaming vortex for liposome synthesis.
    Xu H; Wang Z; Wei W; Li T; Duan X
    Lab Chip; 2024 May; 24(10):2802-2810. PubMed ID: 38693825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes.
    Pourabed A; Younas T; Liu C; Shanbhag BK; He L; Alan T
    J Colloid Interface Sci; 2021 Mar; 585():229-236. PubMed ID: 33285461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems.
    Mijajlovic M; Wright D; Zivkovic V; Bi JX; Biggs MJ
    Colloids Surf B Biointerfaces; 2013 Apr; 104():276-81. PubMed ID: 23334181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic mixing and the formation of nanoscale lipid vesicles.
    Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M
    ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
    Valencia PM; Basto PA; Zhang L; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2010 Mar; 4(3):1671-9. PubMed ID: 20166699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microflow Nanoprecipitation of Positively Charged Gastroresistant Polymer Nanoparticles of Eudragit
    Yus C; Arruebo M; Irusta S; Sebastián V
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices.
    Kim Y; Lee Chung B; Ma M; Mulder WJ; Fayad ZA; Farokhzad OC; Langer R
    Nano Lett; 2012 Jul; 12(7):3587-91. PubMed ID: 22716029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastomeric negative acoustic contrast particles for capture, acoustophoretic transport, and confinement of cells in microfluidic systems.
    Shields CW; Johnson LM; Gao L; López GP
    Langmuir; 2014 Apr; 30(14):3923-7. PubMed ID: 24673242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chem; 2024 Mar; 96(9):3859-3869. PubMed ID: 38318710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.