These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31495988)

  • 41. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals.
    Otsuka T; Ishii A; Dub PA; Ikariya T
    J Am Chem Soc; 2013 Jul; 135(26):9600-3. PubMed ID: 23763272
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modular Pincer-type Pyridylidene Amide Ruthenium(II) Complexes for Efficient Transfer Hydrogenation Catalysis.
    Melle P; Manoharan Y; Albrecht M
    Inorg Chem; 2018 Sep; 57(18):11761-11774. PubMed ID: 30183273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.
    Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L
    ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NNP-Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Base-Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions.
    Adam R; Alberico E; Baumann W; Drexler HJ; Jackstell R; Junge H; Beller M
    Chemistry; 2016 Mar; 22(14):4991-5002. PubMed ID: 26895460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Through the Looking Glass: Using the Lens of [SNS]-Pincer Ligands to Examine First-Row Metal Bifunctional Catalysts.
    Elsby MR; Baker RT
    Acc Chem Res; 2023 Apr; 56(7):798-809. PubMed ID: 36921212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flexible binding of PNP pincer ligands to monomeric iron complexes.
    Fillman KL; Bielinski EA; Schmeier TJ; Nesvet JC; Woodruff TM; Pan CJ; Takase MK; Hazari N; Neidig ML
    Inorg Chem; 2014 Jun; 53(12):6066-72. PubMed ID: 24878059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO
    Decarpigny C; Noël S; Addad A; Ponchel A; Monflier E; Bleta R
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermomorphic system with non-fluorous phase-tagged Ru(BINAP) catalyst: facile liquid/solid catalyst separation and application in asymmetric hydrogenation.
    Huang YY; He YM; Zhou HF; Wu L; Li BL; Fan QH
    J Org Chem; 2006 Mar; 71(7):2874-7. PubMed ID: 16555845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO2 Hydrogenation.
    Spentzos AZ; Barnes CL; Bernskoetter WH
    Inorg Chem; 2016 Aug; 55(16):8225-33. PubMed ID: 27454669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamic Analysis of Metal-Ligand Cooperativity of PNP Ru Complexes: Implications for CO
    Mathis CL; Geary J; Ardon Y; Reese MS; Philliber MA; VanderLinden RT; Saouma CT
    J Am Chem Soc; 2019 Sep; 141(36):14317-14328. PubMed ID: 31390860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemoselectivity Control in the Asymmetric Hydrogenation of γ- and δ-Keto Esters into Hydroxy Esters or Diols.
    Arai N; Namba T; Kawaguchi K; Matsumoto Y; Ohkuma T
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1386-1389. PubMed ID: 29205740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes.
    Elangovan S; Garbe M; Jiao H; Spannenberg A; Junge K; Beller M
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15364-15368. PubMed ID: 27690363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Fundamental Noninnocent Role of Water for the Hydrogenation of Nitrous Oxide by PNP Pincer Ru-based Catalysts.
    Luque-Urrutia JA; Poater A
    Inorg Chem; 2017 Dec; 56(23):14383-14387. PubMed ID: 29148744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.
    Hernández-Juárez M; López-Serrano J; Lara P; Morales-Cerón JP; Vaquero M; Álvarez E; Salazar V; Suárez A
    Chemistry; 2015 May; 21(20):7540-55. PubMed ID: 25820229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron(ii).
    Huber R; Passera A; Mezzetti A
    Chem Commun (Camb); 2019 Aug; 55(63):9251-9266. PubMed ID: 31317973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mn(I) phosphine-amino-phosphinites: a highly modular class of pincer complexes for enantioselective transfer hydrogenation of aryl-alkyl ketones.
    Jayaprakash H
    Dalton Trans; 2021 Oct; 50(40):14115-14119. PubMed ID: 34605841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.