These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3149605)

  • 21. A transcription termination signal immediately precedes the coding sequence for the chloramphenicol-inducible plasmid gene cat-86.
    Ambulos NP; Mongkolsuk S; Lovett PS
    Mol Gen Genet; 1985; 199(1):70-5. PubMed ID: 3923300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii.
    Galopin S; Cattoir V; Leclercq R
    FEMS Microbiol Lett; 2009 Jun; 296(2):185-9. PubMed ID: 19459958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of chloramphenicol acetyltransferase in Bacillus subtilis under the control of a phytoplasma promoter.
    Palmano S; Kirkpatrick BC; Firrao G
    FEMS Microbiol Lett; 2001 May; 199(2):177-9. PubMed ID: 11377863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of a thermostable variant of chloramphenicol acetyltransferase (Cat-86).
    Turner SL; Ford GC; Mountain A; Moir A
    Protein Eng; 1992 Sep; 5(6):535-41. PubMed ID: 1438164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation into the nature of a Bacillus promoter cloned into a promoter-probe plasmid.
    Teixeira AV; Mizrahi V; Thomson JA
    Gene; 1989 Sep; 81(1):159-63. PubMed ID: 2806909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Escherichia coli plasmid vector system for high-level production and purification of heterologous peptides fused to active chloramphenicol acetyltransferase.
    Robben J; Massie G; Bosmans E; Wellens B; Volckaert G
    Gene; 1993 Apr; 126(1):109-13. PubMed ID: 7682530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mRNA for an inducible chloramphenicol acetyltransferase gene is cleaved into discrete fragments in Bacillus subtilis.
    Ambulos NP; Duvall EJ; Lovett PS
    J Bacteriol; 1987 Mar; 169(3):967-72. PubMed ID: 3029040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system.
    Zaghloul TI; Doi RH
    J Bacteriol; 1987 Mar; 169(3):1212-6. PubMed ID: 3102458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positioning ribosomes on leader mRNA for translational activation of the message of an inducible Staphylococcus aureus cat gene.
    Dick T; Matzura H
    Mol Gen Genet; 1988 Sep; 214(1):108-11. PubMed ID: 2465483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillus subtilis mutant allele sup-3 causes lysine insertion at ochre codons: use of sup-3 in studies of translational attenuation.
    Mulbry WW; Ambulos NP; Lovett PS
    J Bacteriol; 1989 Oct; 171(10):5322-4. PubMed ID: 2507520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloramphenicol-inducible gene expression in Bacillus subtilis.
    Duvall EJ; Williams DM; Lovett PS; Rudolph C; Vasantha N; Guyer M
    Gene; 1983 Oct; 24(2-3):171-7. PubMed ID: 6416927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription termination signal for the cat-86 indicator gene in a Bacillus subtilis promoter-cloning plasmid.
    Mongkolsuk S; Duvall EJ; Lovett PS
    Gene; 1985; 37(1-3):83-90. PubMed ID: 3932132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constitutive variants of the pC194 cat gene exhibit DNA alterations in the vicinity of the ribosome binding site sequence.
    Ambulos NP; Chow JH; Mongkolsuk S; Preis LH; Vollmar WR; Lovett PS
    Gene; 1984 May; 28(2):171-6. PubMed ID: 6588016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies.
    Shaw WV; Brenner DG; LeGrice SF; Skinner SE; Hawkins AR
    FEBS Lett; 1985 Jan; 179(1):101-6. PubMed ID: 3855295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of the mini-mu phage for the isolation of lac transcriptional fusions in Bacillus subtilis genes.
    Gardiol D; Gramajo HC; Hirschbein L; de Mendoza D
    Gene; 1993 Jan; 123(1):39-44. PubMed ID: 8423002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of a conserved hydrophobic pocket important for the thermostability of Bacillus pumilus chloramphenicol acetyltransferase (CAT-86).
    Chirakkal H; Ford GC; Moir A
    Protein Eng; 2001 Mar; 14(3):161-6. PubMed ID: 11342712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide sequence of the chloramphenicol acetyltransferase gene of Streptomyces acrimycini.
    Murray IA; Gil JA; Hopwood DA; Shaw WV
    Gene; 1989 Dec; 85(2):283-91. PubMed ID: 2697637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide sequence and structural relationships of a chloramphenicol acetyltransferase encoded by the plasmid pSCS6 from Staphylococcus aureus.
    Cardoso M; Schwarz S
    J Appl Bacteriol; 1992 Apr; 72(4):289-93. PubMed ID: 1517170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat.
    Parent R; Roy PH
    J Bacteriol; 1992 May; 174(9):2891-7. PubMed ID: 1314803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloramphenicol-induced translational activation of cat messenger RNA in vitro.
    Dick T; Matzura H
    J Mol Biol; 1990 Apr; 212(4):661-8. PubMed ID: 2109801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.