These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31496053)

  • 1. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles.
    de la Mata M; Catalán-Gómez S; Nucciarelli F; Pau JL; Molina SI
    Small; 2019 Oct; 15(43):e1902920. PubMed ID: 31496053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
    Knight MW; Coenen T; Yang Y; Brenny BJ; Losurdo M; Brown AS; Everitt HO; Polman A
    ACS Nano; 2015 Feb; 9(2):2049-60. PubMed ID: 25629392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Characterization of 3D Printable Metal-Polymer Nanocomposites.
    Mata M; Sanz de León A; Valencia-Liñán LM; Molina SI
    ACS Mater Au; 2024 Jul; 4(4):424-435. PubMed ID: 39006399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic coupling in closed-packed ordered gallium nanoparticles.
    Catalán-Gómez S; Bran C; Vázquez M; Vázquez L; Pau JL; Redondo-Cubero A
    Sci Rep; 2020 Mar; 10(1):4187. PubMed ID: 32144349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy.
    Cherqui C; Thakkar N; Li G; Camden JP; Masiello DJ
    Annu Rev Phys Chem; 2016 May; 67():331-57. PubMed ID: 27215817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium Nanoparticle Plasmonics.
    Biggins JS; Yazdi S; Ringe E
    Nano Lett; 2018 Jun; 18(6):3752-3758. PubMed ID: 29771126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas.
    Catalán-Gómez S; Redondo-Cubero A; Palomares FJ; Nucciarelli F; Pau JL
    Nanotechnology; 2017 Oct; 28(40):405705. PubMed ID: 28787277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Properties of Individual Gallium Nanoparticles.
    Horák M; Čalkovský V; Mach J; Křápek V; Šikola T
    J Phys Chem Lett; 2023 Mar; 14(8):2012-2019. PubMed ID: 36794890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging the optical near field in plasmonic nanostructures.
    Merlen A; Lagugné-Labarthet F
    Appl Spectrosc; 2014; 68(12):1307-26. PubMed ID: 25479143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale mapping of plasmon resonances of functional multibranched gold nanoparticles.
    Mayoral A; Magen C; Jose-Yacaman M
    Chem Commun (Camb); 2012 Sep; 48(69):8667-9. PubMed ID: 22820550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy.
    Horák M; Šikola T
    Ultramicroscopy; 2020 Sep; 216():113044. PubMed ID: 32535410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.
    Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J
    Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.