These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31496217)

  • 1. Surface Modification of Glass/PDMS Microfluidic Valve Assemblies Enhances Valve Electrical Resistance.
    Wang X; Agasid MT; Baker CA; Aspinwall CA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34463-34470. PubMed ID: 31496217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased aperture surface energy enhances electrical, mechanical, and temporal stability of suspended lipid membranes.
    Bright LK; Baker CA; Agasid MT; Ma L; Aspinwall CA
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11918-26. PubMed ID: 24187929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical isolation and characteristics of permanent magnet-actuated valves for PDMS microfluidics.
    Chen CY; Chen CH; Tu TY; Lin CM; Wo AM
    Lab Chip; 2011 Feb; 11(4):733-7. PubMed ID: 21132206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic serial dilution circuit.
    Paegel BM; Grover WH; Skelley AM; Mathies RA; Joyce GF
    Anal Chem; 2006 Nov; 78(21):7522-7. PubMed ID: 17073422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic reversible valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Weber L; Jiménez M; Palermo A; Bauer M; Loeffler FF; Ibrahim F; Breitling F; Korvink J; Madou M; Mager D; Martínez-Chapa SO
    Lab Chip; 2019 Mar; 19(6):1090-1100. PubMed ID: 30785443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.
    Willis PA; Hunt BD; White VE; Lee MC; Ikeda M; Bae S; Pelletier MJ; Grunthaner FJ
    Lab Chip; 2007 Nov; 7(11):1469-74. PubMed ID: 17960273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
    Chen CF; Liu J; Chang CC; DeVoe DL
    Lab Chip; 2009 Dec; 9(24):3511-6. PubMed ID: 20024030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical properties of pressure-actuated poly(dimethylsiloxane) microfluidic push-down valves.
    Chen H; Gu W; Cellar N; Kennedy R; Takayama S; Meiners JC
    Anal Chem; 2008 Aug; 80(15):6110-3. PubMed ID: 18576665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Oligomer Stamping Technique for Normally Closed Elastomeric Valves on Glass Substrate.
    Dungan J; Mathews J; Levin M; Koomson V
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
    Araci IE; Quake SR
    Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
    Cheng C; Aplin FP; Fridman GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3544-3548. PubMed ID: 33018768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single ion-channel recordings using glass nanopore membranes.
    White RJ; Ervin EN; Yang T; Chen X; Daniel S; Cremer PS; White HS
    J Am Chem Soc; 2007 Sep; 129(38):11766-75. PubMed ID: 17784758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Ibrahim F; Harun SW; Kazemzadeh A; Rothan HA; Yusof R; Madou M
    Lab Chip; 2015 Aug; 15(16):3358-69. PubMed ID: 26158597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luer-lock valve: A pre-fabricated pneumatic valve for 3D printed microfluidic automation.
    Nie M; Takeuchi S
    Biomicrofluidics; 2020 Jul; 14(4):044115. PubMed ID: 32849974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.