These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31496688)
1. Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis. Bariana M; Kaidonis JA; Losic D; Ranjitkar S; Anderson PJ Int J Nanomedicine; 2019; 14():6313-6324. PubMed ID: 31496688 [TBL] [Abstract][Full Text] [Related]
2. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Bariana M; Dwivedi P; Ranjitkar S; Kaidonis JA; Losic D; Anderson PJ Colloids Surf B Biointerfaces; 2017 Feb; 150():59-67. PubMed ID: 27883932 [TBL] [Abstract][Full Text] [Related]
3. Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. Bariana M; Dwivedi P; Ranjitkar S; Kaidonis JA; Losic D; Anderson PJ Nanomedicine; 2018 Oct; 14(7):2365-2374. PubMed ID: 28648641 [TBL] [Abstract][Full Text] [Related]
4. Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone-dependent. Liu J; Nam HK; Wang E; Hatch NE Calcif Tissue Int; 2013 May; 92(5):451-66. PubMed ID: 23358860 [TBL] [Abstract][Full Text] [Related]
5. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Gulati K; Aw MS; Losic D Int J Nanomedicine; 2012; 7():2069-76. PubMed ID: 22619543 [TBL] [Abstract][Full Text] [Related]
6. Viral delivery of tissue nonspecific alkaline phosphatase diminishes craniosynostosis in one of two FGFR2C342Y/+ mouse models of Crouzon syndrome. Nam HK; Vesela I; Schutte SD; Hatch NE PLoS One; 2020; 15(5):e0234073. PubMed ID: 32470062 [TBL] [Abstract][Full Text] [Related]
7. The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT. Perlyn CA; DeLeon VB; Babbs C; Govier D; Burell L; Darvann T; Kreiborg S; Morriss-Kay G Cleft Palate Craniofac J; 2006 Nov; 43(6):740-8. PubMed ID: 17105336 [TBL] [Abstract][Full Text] [Related]
8. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Aw MS; Khalid KA; Gulati K; Atkins GJ; Pivonka P; Findlay DM; Losic D Int J Nanomedicine; 2012; 7():4883-92. PubMed ID: 23028217 [TBL] [Abstract][Full Text] [Related]
9. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis. Wang E; Nam HK; Liu J; Hatch NE Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):196-206. PubMed ID: 25865549 [TBL] [Abstract][Full Text] [Related]
10. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Yang Y; Ao HY; Yang SB; Wang YG; Lin WT; Yu ZF; Tang TT Int J Nanomedicine; 2016; 11():2223-34. PubMed ID: 27274245 [TBL] [Abstract][Full Text] [Related]
11. Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the Crouzon mutation Fgfr2(C342Y). Olafsdóttir H; Darvann TA; Hermann NV; Oubel E; Ersbøll BK; Frangi AF; Larsen P; Perlyn CA; Morriss-Kay GM; Kreiborg S J Anat; 2007 Jul; 211(1):37-52. PubMed ID: 17553099 [TBL] [Abstract][Full Text] [Related]
12. Macrophage Transplantation Fails to Improve Repair of Critical-Sized Calvarial Defects. Borrelli MR; Hu MS; Hong WX; Oliver JD; Duscher D; Longaker MT; Lorenz HP J Craniofac Surg; 2019; 30(8):2640-2645. PubMed ID: 31609958 [TBL] [Abstract][Full Text] [Related]
13. New CRISPR/Cas9-based Fgfr2 Yue YY; Lai CZ; Guo XS; Yang CS; Wang Y; Song GD; Jin XL J Mol Med (Berl); 2024 Oct; 102(10):1255-1266. PubMed ID: 39158595 [TBL] [Abstract][Full Text] [Related]
14. Cranial bone microarchitecture in a mouse model for syndromic craniosynostosis. Ajami S; Van den Dam Z; Hut J; Savery D; Chin M; Koudstaal M; Steacy M; Carriero A; Pitsillides A; Chang YM; Rau C; Marathe S; Dunaway D; Jeelani NUO; Schievano S; Pauws E; Borghi A J Anat; 2024 Dec; 245(6):864-873. PubMed ID: 39096036 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of Lee KKL; Peskett E; Quinn CM; Aiello R; Adeeva L; Moulding DA; Stanier P; Pauws E Dis Model Mech; 2018 Nov; 11(11):. PubMed ID: 30266836 [TBL] [Abstract][Full Text] [Related]
16. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Lee YH; Bhattarai G; Park IS; Kim GR; Kim GE; Lee MH; Yi HK Biomaterials; 2013 Dec; 34(38):10199-208. PubMed ID: 24054849 [TBL] [Abstract][Full Text] [Related]
17. Extensive phenotyping of the orofacial and dental complex in Crouzon syndrome. Khominsky A; Yong R; Ranjitkar S; Townsend G; Anderson PJ Arch Oral Biol; 2018 Feb; 86():123-130. PubMed ID: 29223639 [TBL] [Abstract][Full Text] [Related]
18. Alterations in mandibular morphology associated with glypican 1 and glypican 3 gene mutations. Mian M; Ranjitkar S; Townsend GC; Anderson PJ Orthod Craniofac Res; 2017 Aug; 20(3):183-187. PubMed ID: 28426184 [TBL] [Abstract][Full Text] [Related]
19. Study of a new bone-targeting titanium implant-bone interface. Liu X; Zhang Y; Li S; Wang Y; Sun T; Li Z; Cai L; Wang X; Zhou L; Lai R Int J Nanomedicine; 2016; 11():6307-6324. PubMed ID: 27932879 [TBL] [Abstract][Full Text] [Related]
20. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment. Kaur G; Willsmore T; Gulati K; Zinonos I; Wang Y; Kurian M; Hay S; Losic D; Evdokiou A Biomaterials; 2016 Sep; 101():176-88. PubMed ID: 27289379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]