These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 314973)

  • 21. A new device for automatic measurement of short-circuit current across epithelial tissues.
    Flemström G; Oberg PA; Pettersson H
    Ups J Med Sci; 1973; 78(1):19-21. PubMed ID: 4702326
    [No Abstract]   [Full Text] [Related]  

  • 22. [Hyperpolarization of frog skin exposed to furosemide].
    Natochin IuV
    Biull Eksp Biol Med; 1975 Jun; 79(6):69-71. PubMed ID: 1083260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Action of sex hormones on the permeability characteristics of the skin of the frog (Rana temporaria)].
    SCHOFFENIELS E; BAILLIEN M
    Arch Int Physiol Biochim; 1960 Mar; 68():376-7. PubMed ID: 14443399
    [No Abstract]   [Full Text] [Related]  

  • 24. [Effect of optical forms of cyclophosphamide (CPA) and isophosphamide (IPA) on changes in bioelectrical parameters in the skin of the frog Rana temporaria depending on the site of administration].
    Kurzyca J; Popowicz P
    Folia Med Cracov; 1984; 25(3-4):257-63. PubMed ID: 6336170
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proceedings: The role of endogenous prostaglandin synthesis in the maintenance of frog skin permeability.
    Haylor J; Lote CJ
    J Physiol; 1976 May; 257(1):50P-51P. PubMed ID: 1084922
    [No Abstract]   [Full Text] [Related]  

  • 28. [The role of protein kinase C in Na+ transport regulation in the skin of adult frogs and tadpoles of Rana temporaria].
    Krutetskaia ZI; Lebedev OE; Pashina AV
    Tsitologiia; 2003; 45(6):590-5. PubMed ID: 14521090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proceedings: Measurement of drug effects on the electrical excitability of frog skin.
    O'Regan MG
    J Physiol; 1974 Jan; 236(1):1P-2P. PubMed ID: 4818495
    [No Abstract]   [Full Text] [Related]  

  • 30. Topological aspects of ion transport in complex epithelia (frog skin).
    Huf EG; Howell JR
    Physiol Chem Phys; 1982; 14(2):145-55. PubMed ID: 6985160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proceedings: Apparatus for simple experiments in electrophysiology.
    Jewell BR; Read GL
    J Physiol; 1974 Jul; 240(2):11P. PubMed ID: 4419317
    [No Abstract]   [Full Text] [Related]  

  • 32. [Discontinuous feedback amplifier: principles and application to the measurement of transmembrane potentials and currents of frog atrial fibers].
    Suchaud M; Chesnais JM; Sauviat MP
    C R Acad Sci III; 1986; 302(1):15-20. PubMed ID: 3082473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistence of an aldosterone influence on active sodium transport upon exposure of frog skin to ouabain.
    Crabbé J; Decoene A
    Arch Int Physiol Biochim; 1974; 82(2):343-6. PubMed ID: 4135877
    [No Abstract]   [Full Text] [Related]  

  • 34. [Change in ion transport across the epithelium of the frog skin isolated from the body].
    Todorov D; Georgieva N
    Eksp Med Morfol; 1979; 18(1):40-5. PubMed ID: 436711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and paracellular conductance patterns in voltage-clamped frog skin.
    Nagel W; Garcia-Diaz JF; Essig A
    Prog Clin Biol Res; 1983; 126():221-31. PubMed ID: 6889388
    [No Abstract]   [Full Text] [Related]  

  • 36. [Effect of meprobamate, carisoprodol, oxazepam and phenobarbital on Na+-transport in the isolated frog skin].
    Rüberg-Schweer M; Karger W
    Arzneimittelforschung; 1974 Oct; 24(10):1568-74. PubMed ID: 4547970
    [No Abstract]   [Full Text] [Related]  

  • 37. Comparison of NaCl-induced response across the tongue epithelium to that across other epithelia in the frog.
    Soeda H; Sakudo F
    Fukuoka Shika Daigaku Gakkai Zasshi; 1990; 17(4):333-43. PubMed ID: 2135053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microelectrode artifacts and frog skin potentials.
    Nagel W
    J Membr Biol; 1979 Dec; 51(1):97-100. PubMed ID: 522131
    [No Abstract]   [Full Text] [Related]  

  • 39. [Apparatus for the continuous measurement of the potentials and for the registration of the current in short circuits in isolated frog skin].
    VESCOVINI G; MARRO F
    Boll Soc Ital Biol Sper; 1960 Dec; 36():1831-5. PubMed ID: 13781035
    [No Abstract]   [Full Text] [Related]  

  • 40. [Dynamics of the inclusion of methionine labeled with S35 into the cutaneous epithelium in the frog (Rana temporaria L.)].
    POLIAKOVA TI
    Biull Eksp Biol Med; 1962 Jan; 53():101-6. PubMed ID: 14487551
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.