These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 314976)

  • 61. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method.
    Goldman Y; Morad M
    J Physiol; 1977 Jul; 268(3):613-54. PubMed ID: 301933
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions.
    Vergara J; Bezanilla F; Salzberg BM
    J Gen Physiol; 1978 Dec; 72(6):775-800. PubMed ID: 310445
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intramural multisite recording of transmembrane potential in the heart.
    Hooks DA; LeGrice IJ; Harvey JD; Smaill BH
    Biophys J; 2001 Nov; 81(5):2671-80. PubMed ID: 11606280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording.
    Hirota A; Kamino K; Komuro H; Sakai T; Yada T
    J Physiol; 1985 Dec; 369():209-27. PubMed ID: 4093880
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Birefringence signals in mammalian and frog myocardium. E-C coupling implications.
    Weiss RE; Morad M
    J Gen Physiol; 1983 Jul; 82(1):79-117. PubMed ID: 6886672
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A regional gradient of cardiac intrinsic rhythmicity depicted in embryonic cultured multiple hearts.
    Sakai T; Yada T; Hirota A; Komuro H; Kamino K
    Pflugers Arch; 1998 Dec; 437(1):61-9. PubMed ID: 9817787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanical control of the time-course of contraction of the frog heart.
    Bozler E
    J Gen Physiol; 1975 Mar; 65(3):329-44. PubMed ID: 1078842
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.
    Kim AM; Vergara JL
    Biophys J; 1998 Oct; 75(4):2098-116. PubMed ID: 9746552
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog.
    Caputo C; Fernandez de Bolaños P
    J Physiol; 1979 Apr; 289():175-89. PubMed ID: 313438
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart.
    Martišienė I; Mačianskienė R; Treinys R; Navalinskas A; Almanaitytė M; Karčiauskas D; Kučinskas A; Grigalevičiūtė R; Zigmantaitė V; Benetis R; Jurevičius J
    Biophys J; 2016 Feb; 110(3):723-732. PubMed ID: 26840736
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Action potential synchrony in embryonic precontractile chick heart: optical monitoring with potentiometric dyes.
    Fujii S; Hirota A; Kamino K
    J Physiol; 1981; 319():529-41. PubMed ID: 7320925
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye.
    Beach JM; McGahren ED; Xia J; Duling BR
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2216-27. PubMed ID: 8764277
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Two-photon excitation of di-4-ANEPPS for optical recording of action potentials in rabbit heart.
    Dumas JH; Knisley SB
    Ann Biomed Eng; 2005 Dec; 33(12):1802-7. PubMed ID: 16389528
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical recording of action potential propagation in demyelinated frog nerve.
    Shrager P; Chiu SY; Ritchie JM; Zecevic D; Cohen LB
    Biophys J; 1987 Feb; 51(2):351-5. PubMed ID: 3493812
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Further studies on absorption changes arising in dye-stained nerves during excitation.
    Warashina A
    J Membr Biol; 1980; 53(3):207-13. PubMed ID: 6156241
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dye absorption changes in single muscle fibers: an application of an automatic balancing circuit.
    Nakajima S; Gilai A; Dingeman D
    Pflugers Arch; 1976 Apr; 362(3):285-7. PubMed ID: 944436
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Action spectra of the antileukemic and antiviral activities of merocyanine 540.
    O'Brien JM; Singh RJ; Feix JB; Kalyanaraman B; Sieber F
    Photochem Photobiol; 1991 Nov; 54(5):851-4. PubMed ID: 1665914
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Action potential-induced fluorescence changes resolved with an optical fiber carrying excitation light.
    Krauthamer V; Bryant HJ; Davis CC; Athey TW
    J Fluoresc; 1991 Dec; 1(4):207-13. PubMed ID: 24243071
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photolysis properties of merocyanine dye LB films by various time of UV irradiation.
    Yang CH; Lee JY; Sung GC; Kim GC; Shin HK; Kwon YS
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1377-80. PubMed ID: 21456192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.