These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31497808)

  • 1. SERS monitoring of the Fenton degradation reaction based on microfluidic droplets and alginate microparticles.
    Yue S; Ye W; Xu Z
    Analyst; 2019 Sep; 144(19):5882-5889. PubMed ID: 31497808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoS
    Wei Q; Lu B; Yang Q; Shi C; Wei Y; Xu M; Zhang C; Yuan Y
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in droplet microfluidics for SERS and Raman analysis.
    Yue S; Fang J; Xu Z
    Biosens Bioelectron; 2022 Feb; 198():113822. PubMed ID: 34836710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional magnetic sphere-MoS
    Lai H; Ma G; Shang W; Chen D; Yun Y; Peng X; Xu F
    Chemosphere; 2019 May; 223():465-473. PubMed ID: 30784753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Femtoliter Droplets for Ultrafast Nanoextraction and Supersensitive Online Microanalysis.
    Li M; Dyett B; Yu H; Bansal V; Zhang X
    Small; 2019 Jan; 15(1):e1804683. PubMed ID: 30488558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip 3D SERS materials produced by self-assemble of copper microparticle and galvanic replacement reaction.
    Zhang H; Yuan Y; Yan S; Lou K; Gao Y; Wang S; Huang Y
    Appl Opt; 2019 Jun; 58(17):4720-4725. PubMed ID: 31251294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy--concepts and applications.
    März A; Henkel T; Cialla D; Schmitt M; Popp J
    Lab Chip; 2011 Nov; 11(21):3584-92. PubMed ID: 21964776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
    Wu L; Wang Z; Zong S; Cui Y
    Biosens Bioelectron; 2014 Dec; 62():13-8. PubMed ID: 24973537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS-based droplet microfluidics for high-throughput gradient analysis.
    Jeon J; Choi N; Chen H; Moon JI; Chen L; Choo J
    Lab Chip; 2019 Feb; 19(4):674-681. PubMed ID: 30657509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications.
    Visaveliya N; Lenke S; Köhler JM
    ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line monitoring of airborne chemistry in levitated nanodroplets: in situ synthesis and application of SERS-active Ag-Sols for trace analysis by FT-Raman spectroscopy.
    Leopold N; Haberkorn M; Laurell T; Nilsson J; Baena JR; Frank J; Lendl B
    Anal Chem; 2003 May; 75(9):2166-71. PubMed ID: 12720357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics.
    Gao R; Cheng Z; deMello AJ; Choo J
    Lab Chip; 2016 Mar; 16(6):1022-9. PubMed ID: 26879372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous immunoassays of dual prostate cancer markers using a SERS-based microdroplet channel.
    Gao R; Cheng Z; Wang X; Yu L; Guo Z; Zhao G; Choo J
    Biosens Bioelectron; 2018 Nov; 119():126-133. PubMed ID: 30121424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.