These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31498252)

  • 1. Improving Prediction of Fall Risk Using Electronic Health Record Data With Various Types and Sources at Multiple Times.
    Jung H; Park HA; Hwang H
    Comput Inform Nurs; 2020 Mar; 38(3):157-164. PubMed ID: 31498252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the Predictive Validity of the Hendrich II Fall Risk Model.
    Jung H; Park HA
    West J Nurs Res; 2018 Dec; 40(12):1785-1799. PubMed ID: 29577823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the Hendrich II Inpatient Fall Risk Screen to Predict Outpatient Falls After Emergency Department Visits.
    Patterson BW; Repplinger MD; Pulia MS; Batt RJ; Svenson JE; Trinh A; Mendonça EA; Smith MA; Hamedani AG; Shah MN
    J Am Geriatr Soc; 2018 Apr; 66(4):760-765. PubMed ID: 29509312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Automatic Inpatient Fall Prediction Using Routinely Captured EMR Data: Preliminary Results.
    Cho I; Chung E
    Stud Health Technol Inform; 2016; 225():828-9. PubMed ID: 27332363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the predictive validity of three fall risk assessment tools and analysis of fall-risk factors at a tertiary teaching hospital.
    Cho EH; Woo YJ; Han A; Chung YC; Kim YH; Park HA
    J Clin Nurs; 2020 Sep; 29(17-18):3482-3493. PubMed ID: 32564439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting inpatient falls by using natural language processing of electronic medical records.
    Toyabe S
    BMC Health Serv Res; 2012 Dec; 12():448. PubMed ID: 23217016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a hospital-specific electronic inpatient fall surveillance program: phase 1.
    Falen T; Alexander J; Curtis D; UnRuh L
    Health Care Manag (Frederick); 2013; 32(4):359-69. PubMed ID: 24168872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fall Ascertainment and Development of a Risk Prediction Model Using Electronic Medical Records.
    Oshiro CES; Frankland TB; Rosales AG; Perrin NA; Bell CL; Lo SHY; Trinacty CM
    J Am Geriatr Soc; 2019 Jul; 67(7):1417-1422. PubMed ID: 30875089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the Hendrich II Fall Risk Model: The imperative to reduce modifiable risk factors.
    Hendrich AL; Bufalino A; Groves C
    Appl Nurs Res; 2020 Jun; 53():151243. PubMed ID: 32451003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using machine learning models to predict falls in hospitalised adults.
    Jahandideh S; Hutchinson AF; Bucknall TK; Considine J; Driscoll A; Manias E; Phillips NM; Rasmussen B; Vos N; Hutchinson AM
    Int J Med Inform; 2024 Jul; 187():105436. PubMed ID: 38583216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between occurrence of falls and fall-risk scores in an acute care setting using the Hendrich II fall risk model.
    Swartzell KL; Fulton JS; Friesth BM
    Medsurg Nurs; 2013; 22(3):180-7. PubMed ID: 23865279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-driven and practice-based approach to identify risk factors associated with hospital-acquired falls: Applying manual and semi- and fully-automated methods.
    Lucero RJ; Lindberg DS; Fehlberg EA; Bjarnadottir RI; Li Y; Cimiotti JP; Crane M; Prosperi M
    Int J Med Inform; 2019 Feb; 122():63-69. PubMed ID: 30623785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of Risk Factors for Falls Using Electronic Nursing Records.
    Choi E; Lee Y; Yang E; Kim J; Kim Y; Park HA
    Stud Health Technol Inform; 2016; 225():637-8. PubMed ID: 27332288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of elders at higher risk for fall with statewide electronic health records and a machine learning algorithm.
    Ye C; Li J; Hao S; Liu M; Jin H; Zheng L; Xia M; Jin B; Zhu C; Alfreds ST; Stearns F; Kanov L; Sylvester KG; Widen E; McElhinney D; Ling XB
    Int J Med Inform; 2020 May; 137():104105. PubMed ID: 32193089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Nursing Actions Documented in EHRs for Patients Falls Against Clinical Practice Guidelines in a Korean Tertiary Hospital.
    Lee Y; Choi E; Yang E; Kim J; Kim Y; Park HA
    Stud Health Technol Inform; 2016; 225():639-40. PubMed ID: 27332289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic risk model for inpatient falls.
    Choi Y; Staley B; Henriksen C; Xu D; Lipori G; Brumback B; Winterstein AG
    Am J Health Syst Pharm; 2018 Sep; 75(17):1293-1303. PubMed ID: 30037814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Inpatient Falls Using Automated Review of Text-Based Medical Records.
    Shiner B; Neily J; Mills PD; Watts BV
    J Patient Saf; 2020 Sep; 16(3):e174-e178. PubMed ID: 27331601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of an automated fall risk assessment system.
    Lee JY; Jin Y; Piao J; Lee SM
    Int J Qual Health Care; 2016 Apr; 28(2):175-82. PubMed ID: 26851379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Approach to Inpatient Fall Risk Prediction and Its Cross-Site Validation Using Time-Variant Data.
    Cho I; Boo EH; Chung E; Bates DW; Dykes P
    J Med Internet Res; 2019 Feb; 21(2):e11505. PubMed ID: 30777849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic fall surveillance system model.
    Falen T; Unruh L; Segal D
    Health Care Manag (Frederick); 2011; 30(4):342-51. PubMed ID: 22042142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.