These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31498989)

  • 1. Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles.
    Patel S; Seet J; Li L; Duhamel J
    Langmuir; 2019 Oct; 35(40):13145-13156. PubMed ID: 31498989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives.
    Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON
    Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the Aggregation Number of Pyrene-Labeled Gemini Surfactant Micelles by Pyrene Fluorescence Quenching Measurements.
    Ba-Salem AO; Duhamel J
    Langmuir; 2021 May; 37(19):6069-6079. PubMed ID: 33960794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant Structure-Dependent Interactions with Modified Starch Nanoparticles Probed by Fluorescence Spectroscopy.
    Zhang Q; Kim D; Li L; Patel S; Duhamel J
    Langmuir; 2019 Mar; 35(9):3432-3444. PubMed ID: 30720285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Pyrene Fluorescence to the Characterization of Hydrophobically Modified Starch Nanoparticles.
    Kim D; Amos R; Gauthier M; Duhamel J
    Langmuir; 2018 Jul; 34(29):8611-8621. PubMed ID: 29936845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines.
    Aguado R; Santos ARMG; Vallejos S; Valente AJM
    Molecules; 2022 May; 27(9):. PubMed ID: 35566254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.
    Ma Y; Wang L
    Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors.
    Venkatramaiah N; Firmino AD; Almeida Paz FA; Tomé JP
    Chem Commun (Camb); 2014 Sep; 50(68):9683-6. PubMed ID: 25017665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions.
    Zhang S; Ding L; Lü F; Liu T; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of aza-BODIPY as a Nitroaromatic Sensor.
    Sadikogullari BC; Koramaz I; Sütay B; Karagoz B; Özdemir AD
    ACS Omega; 2023 Jul; 8(28):25254-25261. PubMed ID: 37483181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the presence of unwanted fluorescent species in the study of pyrene-labeled macromolecules.
    Chen S; Duhamel J; Bahun GJ; Adronov A
    J Phys Chem B; 2011 Aug; 115(33):9921-9. PubMed ID: 21800836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres.
    Turhan H; Tukenmez E; Karagoz B; Bicak N
    Talanta; 2018 Mar; 179():107-114. PubMed ID: 29310209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.
    Ma Y; Huang S; Wang L
    Talanta; 2013 Nov; 116():535-40. PubMed ID: 24148441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Diffusion Driven Ultrafast Detection of ppm-Level Nitroaromatic Pollutants in Aqueous Media Using a Hydrophilic Fluorescent Paper Sensor.
    Lu W; Zhang J; Huang Y; Théato P; Huang Q; Chen T
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23884-23893. PubMed ID: 28650607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence study of arene probe microenvironment in the intraparticle void volume of zeolites interfaced with bathing polar solvents.
    Ellison EH; Moodley D; Hime J
    J Phys Chem B; 2006 Mar; 110(10):4772-81. PubMed ID: 16526714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitroanilines as quenchers of pyrene fluorescence.
    Agudelo-Morales CE; Silva OF; Galian RE; Pérez-Prieto J
    Chemphyschem; 2012 Dec; 13(18):4195-201. PubMed ID: 23090935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.