These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31498997)

  • 1. Covalent Bonding and Atomic-Level Plasticity Increase Adhesion in Silicon-Diamond Nanocontacts.
    Milne ZB; Schall JD; Jacobs TDB; Harrison JA; Carpick RW
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40734-40748. PubMed ID: 31498997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sliding History-Dependent Adhesion of Nanoscale Silicon Contacts Revealed by in Situ Transmission Electron Microscopy.
    Milne ZB; Bernal RA; Carpick RW
    Langmuir; 2019 Dec; 35(48):15628-15638. PubMed ID: 31397572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction force microscopy of tribochemistry and interfacial ageing for the SiO
    Petzold C; Koch M; Bennewitz R
    Beilstein J Nanotechnol; 2018; 9():1647-1658. PubMed ID: 29977699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Adhesion and Material Transfer at 2D MoS
    Toom SR; Sato T; Milne Z; Bernal RA; Jeng YR; Muratore C; Glavin NR; Carpick RW; Schall JD
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30506-30520. PubMed ID: 38805354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
    Wierez-Kien M; Craciun AD; Pinon AV; Roux SL; Gallani JL; Rastei MV
    Nanotechnology; 2018 Apr; 29(15):155704. PubMed ID: 29406318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point.
    Ryan KE; Keating PL; Jacobs TD; Grierson DS; Turner KT; Carpick RW; Harrison JA
    Langmuir; 2014 Mar; 30(8):2028-37. PubMed ID: 24494582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Water on Tribochemical Wear of Silicon Oxide Interface: Molecular Dynamics (MD) Study with Reactive Force Field (ReaxFF).
    Yeon J; van Duin AC; Kim SH
    Langmuir; 2016 Feb; 32(4):1018-26. PubMed ID: 26756178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage.
    Zilibotti G; Righi MC
    Langmuir; 2011 Jun; 27(11):6862-7. PubMed ID: 21545120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips.
    Liu J; Jiang Y; Grierson DS; Sridharan K; Shao Y; Jacobs TDB; Falk ML; Carpick RW; Turner KT
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35341-35348. PubMed ID: 28960949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size Dependence of Nanoscale Wear of Silicon Carbide.
    Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces.
    Oras S; Vlassov S; Berholts M; Lõhmus R; Mougin K
    Beilstein J Nanotechnol; 2018; 9():660-670. PubMed ID: 29527440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for characterizing nanoscale wear of atomic force microscope tips.
    Liu J; Notbohm JK; Carpick RW; Turner KT
    ACS Nano; 2010 Jul; 4(7):3763-72. PubMed ID: 20575565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric Effects Control Dry Friction of H- and F-Terminated Carbon Surfaces.
    Reichenbach T; Mayrhofer L; Kuwahara T; Moseler M; Moras G
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8805-8816. PubMed ID: 31971767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis.
    Abu-Lail NI; Camesano TA
    Langmuir; 2006 Aug; 22(17):7296-301. PubMed ID: 16893229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale adhesion and sliding on biased semiconductors.
    Mukherjee A; Craciun AD; Gallani JL; Rastei MV
    Faraday Discuss; 2017 Jul; 199():323-334. PubMed ID: 28428990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.