BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31499345)

  • 1. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security.
    Bagheri M; Al-Jabery K; Wunsch D; Burken JG
    Sci Total Environ; 2020 Jan; 698():133999. PubMed ID: 31499345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deeper look at plant uptake of environmental contaminants using intelligent approaches.
    Bagheri M; Al-Jabery K; Wunsch DC; Burken JG
    Sci Total Environ; 2019 Feb; 651(Pt 1):561-569. PubMed ID: 30245412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models.
    Bagheri M; He X; Oustriere N; Liu W; Shi H; Limmer MA; Burken JG
    Sci Total Environ; 2021 Jan; 751():141418. PubMed ID: 33181989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning.
    Wang X; Liu L; Zhang W; Ma X
    Environ Sci Technol; 2021 Jun; 55(11):7491-7500. PubMed ID: 33999596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting crop root concentration factors of organic contaminants with machine learning models.
    Gao F; Shen Y; Brett Sallach J; Li H; Zhang W; Li Y; Liu C
    J Hazard Mater; 2022 Feb; 424(Pt B):127437. PubMed ID: 34678561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes.
    Li Z
    J Hazard Mater; 2022 Jul; 434():128911. PubMed ID: 35460996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures.
    Gao F; Shen Y; Sallach JB; Li H; Liu C; Li Y
    Environ Sci Technol; 2021 Dec; 55(24):16358-16368. PubMed ID: 34859664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters.
    Li Y; Chiou CT; Li H; Schnoor JL
    Environ Int; 2019 May; 126():46-53. PubMed ID: 30776749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.
    Garvin N; Doucette WJ; White JC
    Chemosphere; 2015 Jul; 130():98-102. PubMed ID: 25537866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants.
    Zhang H; Chen J; Ni Y; Zhang Q; Zhao L
    Chemosphere; 2009 Aug; 76(6):740-6. PubMed ID: 19541345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique.
    Hsu FC; Marxmiller RL; Yang AY
    Plant Physiol; 1990 Aug; 93(4):1573-8. PubMed ID: 16667658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant uptake and translocation of contaminants of emerging concern in soil.
    Pullagurala VLR; Rawat S; Adisa IO; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2018 Sep; 636():1585-1596. PubMed ID: 29913619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential uptake and translocation of β-HCH and dieldrin by several plant species from hydroponic medium.
    Namiki S; Otani T; Seike N; Satoh S
    Environ Toxicol Chem; 2015 Mar; 34(3):536-44. PubMed ID: 25470472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.).
    Wang Q; Zhao H; Xu L; Wang Y
    Ecotoxicol Environ Saf; 2019 Jun; 174():683-689. PubMed ID: 30878008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solute transport and extraction by a single root in unsaturated soils: model development and experiment.
    Kim J; Sung K; Corapcioglu MY; Drew MC
    Environ Pollut; 2004 Sep; 131(1):61-70. PubMed ID: 15210276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of molecular structures and quantum chemistry technique to root concentration factor: An innovative application of interpretable machine learning.
    Zhu T; Zhang Y; Li Y; Tao T; Tao C
    J Hazard Mater; 2023 Oct; 459():132320. PubMed ID: 37604035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the mechanisms for uptake and translocation of dioxane in a soil-plant ecosystem with STELLA.
    Ouyang Y
    J Contam Hydrol; 2008 Jan; 95(1-2):17-29. PubMed ID: 17870205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil.
    Tao Y; Zhang S; Zhu YG; Christie P
    Environ Sci Technol; 2009 May; 43(10):3556-60. PubMed ID: 19544854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipophilicity matters - A new look at experimental plant uptake data from literature.
    Schriever C; Lamshoeft M
    Sci Total Environ; 2020 Apr; 713():136667. PubMed ID: 32019028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.