These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31499345)
1. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security. Bagheri M; Al-Jabery K; Wunsch D; Burken JG Sci Total Environ; 2020 Jan; 698():133999. PubMed ID: 31499345 [TBL] [Abstract][Full Text] [Related]
2. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Bagheri M; Al-Jabery K; Wunsch DC; Burken JG Sci Total Environ; 2019 Feb; 651(Pt 1):561-569. PubMed ID: 30245412 [TBL] [Abstract][Full Text] [Related]
3. Deep learning models for predicting plant uptake of emerging contaminants by including the role of plant macromolecular compositions. Bagheri M; McKenney S; Ware JG; Farshforoush N J Hazard Mater; 2024 Dec; 480():135921. PubMed ID: 39305592 [TBL] [Abstract][Full Text] [Related]
4. Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models. Bagheri M; He X; Oustriere N; Liu W; Shi H; Limmer MA; Burken JG Sci Total Environ; 2021 Jan; 751():141418. PubMed ID: 33181989 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning. Wang X; Liu L; Zhang W; Ma X Environ Sci Technol; 2021 Jun; 55(11):7491-7500. PubMed ID: 33999596 [TBL] [Abstract][Full Text] [Related]
6. Predicting crop root concentration factors of organic contaminants with machine learning models. Gao F; Shen Y; Brett Sallach J; Li H; Zhang W; Li Y; Liu C J Hazard Mater; 2022 Feb; 424(Pt B):127437. PubMed ID: 34678561 [TBL] [Abstract][Full Text] [Related]
7. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes. Li Z J Hazard Mater; 2022 Jul; 434():128911. PubMed ID: 35460996 [TBL] [Abstract][Full Text] [Related]
8. Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures. Gao F; Shen Y; Sallach JB; Li H; Liu C; Li Y Environ Sci Technol; 2021 Dec; 55(24):16358-16368. PubMed ID: 34859664 [TBL] [Abstract][Full Text] [Related]
9. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters. Li Y; Chiou CT; Li H; Schnoor JL Environ Int; 2019 May; 126():46-53. PubMed ID: 30776749 [TBL] [Abstract][Full Text] [Related]
10. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Garvin N; Doucette WJ; White JC Chemosphere; 2015 Jul; 130():98-102. PubMed ID: 25537866 [TBL] [Abstract][Full Text] [Related]
11. Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. Zhang H; Chen J; Ni Y; Zhang Q; Zhao L Chemosphere; 2009 Aug; 76(6):740-6. PubMed ID: 19541345 [TBL] [Abstract][Full Text] [Related]
12. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Hsu FC; Marxmiller RL; Yang AY Plant Physiol; 1990 Aug; 93(4):1573-8. PubMed ID: 16667658 [TBL] [Abstract][Full Text] [Related]
13. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system. Ouyang Y Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240 [TBL] [Abstract][Full Text] [Related]
14. Plant uptake and translocation of contaminants of emerging concern in soil. Pullagurala VLR; Rawat S; Adisa IO; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL Sci Total Environ; 2018 Sep; 636():1585-1596. PubMed ID: 29913619 [TBL] [Abstract][Full Text] [Related]
15. Differential uptake and translocation of β-HCH and dieldrin by several plant species from hydroponic medium. Namiki S; Otani T; Seike N; Satoh S Environ Toxicol Chem; 2015 Mar; 34(3):536-44. PubMed ID: 25470472 [TBL] [Abstract][Full Text] [Related]
16. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.). Wang Q; Zhao H; Xu L; Wang Y Ecotoxicol Environ Saf; 2019 Jun; 174():683-689. PubMed ID: 30878008 [TBL] [Abstract][Full Text] [Related]
17. Solute transport and extraction by a single root in unsaturated soils: model development and experiment. Kim J; Sung K; Corapcioglu MY; Drew MC Environ Pollut; 2004 Sep; 131(1):61-70. PubMed ID: 15210276 [TBL] [Abstract][Full Text] [Related]
18. Contribution of molecular structures and quantum chemistry technique to root concentration factor: An innovative application of interpretable machine learning. Zhu T; Zhang Y; Li Y; Tao T; Tao C J Hazard Mater; 2023 Oct; 459():132320. PubMed ID: 37604035 [TBL] [Abstract][Full Text] [Related]
19. Modeling the mechanisms for uptake and translocation of dioxane in a soil-plant ecosystem with STELLA. Ouyang Y J Contam Hydrol; 2008 Jan; 95(1-2):17-29. PubMed ID: 17870205 [TBL] [Abstract][Full Text] [Related]
20. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Tao Y; Zhang S; Zhu YG; Christie P Environ Sci Technol; 2009 May; 43(10):3556-60. PubMed ID: 19544854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]