These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31499394)
1. The validity and usability of an eight marker model for avatar-based biofeedback gait training. Booth ATC; van der Krogt MM; Buizer AI; Steenbrink F; Harlaar J Clin Biomech (Bristol); 2019 Dec; 70():146-152. PubMed ID: 31499394 [TBL] [Abstract][Full Text] [Related]
2. Immediate Effects of Immersive Biofeedback on Gait in Children With Cerebral Palsy. Booth AT; Buizer AI; Harlaar J; Steenbrink F; van der Krogt MM Arch Phys Med Rehabil; 2019 Apr; 100(4):598-605. PubMed ID: 30447196 [TBL] [Abstract][Full Text] [Related]
3. Real-time feedback to improve gait in children with cerebral palsy. van Gelder L; Booth ATC; van de Port I; Buizer AI; Harlaar J; van der Krogt MM Gait Posture; 2017 Feb; 52():76-82. PubMed ID: 27883988 [TBL] [Abstract][Full Text] [Related]
4. Impact of multilevel joint contractures of the hips, knees and ankles on the Gait Profile score in children with cerebral palsy. Holmes SJ; Mudge AJ; Wojciechowski EA; Axt MW; Burns J Clin Biomech (Bristol); 2018 Nov; 59():8-14. PubMed ID: 30099242 [TBL] [Abstract][Full Text] [Related]
5. The Human Body Model versus conventional gait models for kinematic gait analysis in children with cerebral palsy. Flux E; van der Krogt MM; Cappa P; Petrarca M; Desloovere K; Harlaar J Hum Mov Sci; 2020 Apr; 70():102585. PubMed ID: 32217202 [TBL] [Abstract][Full Text] [Related]
6. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study. Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162 [TBL] [Abstract][Full Text] [Related]
7. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O Clin Biomech (Bristol); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949 [TBL] [Abstract][Full Text] [Related]
8. Multi-joint gait clustering for children and youth with diplegic cerebral palsy. Kuntze G; Nettel-Aguirre A; Ursulak G; Robu I; Bowal N; Goldstein S; Emery CA PLoS One; 2018; 13(10):e0205174. PubMed ID: 30356242 [TBL] [Abstract][Full Text] [Related]
9. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
10. Report of the Primary Outcomes for Gait Mechanics in Men of the ACL-SPORTS Trial: Secondary Prevention With and Without Perturbation Training Does Not Restore Gait Symmetry in Men 1 or 2 Years After ACL Reconstruction. Capin JJ; Zarzycki R; Arundale A; Cummer K; Snyder-Mackler L Clin Orthop Relat Res; 2017 Oct; 475(10):2513-2522. PubMed ID: 28224442 [TBL] [Abstract][Full Text] [Related]
11. Intraoperative experiments combined with gait analyses indicate that active state rather than passive dominates the spastic gracilis muscle's joint movement limiting effect in cerebral palsy. Kaya CS; Bilgili F; Akalan NE; Temelli Y; Ateş F; Yucesoy CA Clin Biomech (Bristol); 2019 Aug; 68():151-157. PubMed ID: 31212210 [TBL] [Abstract][Full Text] [Related]
12. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy. Yoo JW; Lee DR; Cha YJ; You SH NeuroRehabilitation; 2017; 40(2):175-185. PubMed ID: 28222541 [TBL] [Abstract][Full Text] [Related]
13. Short and long-term effects of gait retraining using real-time biofeedback to reduce knee hyperextension pattern in young women. Teran-Yengle P; Cole KJ; Yack HJ Gait Posture; 2016 Oct; 50():185-189. PubMed ID: 27637090 [TBL] [Abstract][Full Text] [Related]
14. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy. Hösl M; Böhm H; Eck J; Döderlein L; Arampatzis A Gait Posture; 2018 Sep; 65():121-128. PubMed ID: 30558918 [TBL] [Abstract][Full Text] [Related]
15. Auditory biofeedback in spastic diplegia. Kassover M; Tauber C; Au J; Pugh J J Orthop Res; 1986; 4(2):246-9. PubMed ID: 3712131 [TBL] [Abstract][Full Text] [Related]
16. Audiovisual biofeedback amplifies plantarflexor adaptation during walking among children with cerebral palsy. Spomer AM; Conner BC; Schwartz MH; Lerner ZF; Steele KM J Neuroeng Rehabil; 2023 Dec; 20(1):164. PubMed ID: 38062454 [TBL] [Abstract][Full Text] [Related]
17. A real time biofeedback using Kinect and Wii to improve gait for post-total knee replacement rehabilitation: a case study report. Levinger P; Zeina D; Teshome AK; Skinner E; Begg R; Abbott JH Disabil Rehabil Assist Technol; 2016; 11(3):251-62. PubMed ID: 26336875 [TBL] [Abstract][Full Text] [Related]
18. Effects of functional power training on gait kinematics in children with cerebral palsy. Oudenhoven LM; van Vulpen LF; Dallmeijer AJ; de Groot S; Buizer AI; van der Krogt MM Gait Posture; 2019 Sep; 73():168-172. PubMed ID: 31344605 [TBL] [Abstract][Full Text] [Related]
19. Electromyographic biofeedback-driven gaming to alter calf muscle activation during gait in children with spastic cerebral palsy. Flux E; Bar-On L; Buizer AI; Harlaar J; van der Krogt MM Gait Posture; 2023 May; 102():10-17. PubMed ID: 36870265 [TBL] [Abstract][Full Text] [Related]
20. Kinematic adaptation and changes in gait classification in running compared to walking in children with unilateral spastic cerebral palsy. Krätschmer R; Böhm H; Döderlein L Gait Posture; 2019 Jan; 67():104-111. PubMed ID: 30312847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]