These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31499462)

  • 1. Electron flow of biological H
    Amin MM; Taheri E; Bina B; van Ginkel SW; Ghasemian M; Puad NIM; Fatehizadeh A
    J Environ Manage; 2019 Nov; 250():109461. PubMed ID: 31499462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C.
    Dessì P; Lakaniemi AM; Lens PNL
    Water Res; 2017 May; 115():120-129. PubMed ID: 28273442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment.
    Cai M; Liu J; Wei Y
    Environ Sci Technol; 2004 Jun; 38(11):3195-202. PubMed ID: 15224755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry evaluation of biohydrogen production from various carbohydrates.
    Amin MM; Bina B; Taheri E; Fatehizadeh A; Ghasemian M
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20915-20921. PubMed ID: 27488706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH.
    Tang GL; Huang J; Sun ZJ; Tang QQ; Yan CH; Liu GQ
    J Biosci Bioeng; 2008 Jul; 106(1):80-7. PubMed ID: 18691536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis.
    Yang G; Wang J
    Bioresour Technol; 2017 Nov; 243():1027-1036. PubMed ID: 28764104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge.
    Yang G; Hu Y; Wang J
    Bioresour Technol; 2019 Aug; 285():121342. PubMed ID: 31005640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of genus Clostridium abundance on mixed-culture fermentation converting food waste into biohydrogen.
    Jung JH; Sim YB; Baik JH; Park JH; Kim SM; Yang J; Kim SH
    Bioresour Technol; 2021 Dec; 342():125942. PubMed ID: 34563827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.
    Patel AK; Debroy A; Sharma S; Saini R; Mathur A; Gupta R; Tuli DK
    Bioresour Technol; 2015 Jan; 175():291-7. PubMed ID: 25459835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of biohydrogen production using a reduced pressure fermentation.
    Kisielewska M; Dębowski M; Zieliński M
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic evaluation on H2 production in glucose fermentation.
    Lee HS; Salerno MB; Rittmann BE
    Environ Sci Technol; 2008 Apr; 42(7):2401-7. PubMed ID: 18504972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved biohydrogen production via graphene oxide supported granular system based on algal hydrolyzate, secondary sewage sludge and bacterial consortia.
    Srivastava N; Singh R; Kushwaha D; Mokhtar JA; Abujamel TS; Harakeh S; Haque S; Srivastava M; Mishra PK; Gupta VK
    J Biotechnol; 2022 Nov; 358():41-45. PubMed ID: 35970360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H2 consumption by anaerobic non-methanogenic mixed cultures.
    Dinamarca C; Gañán M; Liu J; Bakke R
    Water Sci Technol; 2011; 63(8):1582-9. PubMed ID: 21866755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C).
    Kotsopoulos TA; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2006 Jun; 94(2):296-302. PubMed ID: 16570323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of substrate species on fermentative hydrogen production].
    Tang GL; Tang QQ; Huang J; Liu GQ; Sun ZJ
    Huan Jing Ke Xue; 2008 Aug; 29(8):2345-9. PubMed ID: 18839598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.