These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31499664)

  • 1. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Lancet Commission on dengue and other Aedes-transmitted viral diseases.
    Wilder-Smith A; Lindsay SW; Scott TW; Ooi EE; Gubler DJ; Das P
    Lancet; 2020 Jun; 395(10241):1890-1891. PubMed ID: 32563358
    [No Abstract]   [Full Text] [Related]  

  • 3. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic dynamics of dengue epidemics.
    de Souza DR; Tomé T; Pinho ST; Barreto FR; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012709. PubMed ID: 23410361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population.
    Nipa KF; Jang SR; Allen LJS
    Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk Assessment of Dengue Transmission in Bangladesh Using a Spatiotemporal Network Model and Climate Data.
    Riad MH; Cohnstaedt LW; Scoglio CM
    Am J Trop Med Hyg; 2021 Jan; 104(4):1444-1455. PubMed ID: 33534755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis.
    Sedda L; Vilela APP; Aguiar ERGR; Gaspar CHP; Gonçalves ANA; Olmo RP; Silva ATS; de Cássia da Silveira L; Eiras ÁE; Drumond BP; Kroon EG; Marques JT
    Parasit Vectors; 2018 Feb; 11(1):79. PubMed ID: 29394906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Day-to-Day Population Movement and the Management of Dengue Epidemics.
    Falcón-Lezama JA; Martínez-Vega RA; Kuri-Morales PA; Ramos-Castañeda J; Adams B
    Bull Math Biol; 2016 Oct; 78(10):2011-2033. PubMed ID: 27704330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and Hopf Bifurcation of a Vector-Borne Disease Model with Saturated Infection Rate and Reinfection.
    Hu Z; Yin S; Wang H
    Comput Math Methods Med; 2019; 2019():1352698. PubMed ID: 31341509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of an asymmetric two-strain dengue model.
    Kooi BW; Aguiar M; Stollenwerk N
    Math Biosci; 2014 Feb; 248():128-39. PubMed ID: 24434818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State estimators for some epidemiological systems.
    Iggidr A; Souza MO
    J Math Biol; 2019 Jan; 78(1-2):225-256. PubMed ID: 30032315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexity of host-vector dynamics in a two-strain dengue model.
    Rashkov P; Kooi BW
    J Biol Dyn; 2021 Dec; 15(1):35-72. PubMed ID: 33357025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.
    Otero M; Solari HG
    Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SIR-Dengue transmission model with seasonal effects and impulsive control.
    Páez Chávez J; Götz T; Siegmund S; Wijaya KP
    Math Biosci; 2017 Jul; 289():29-39. PubMed ID: 28434995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.