These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31499664)

  • 21. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use.
    Aldila D; Seno H
    Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.
    Huber JH; Childs ML; Caldwell JM; Mordecai EA
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006451. PubMed ID: 29746468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue.
    Coutinho FA; Burattini MN; Lopez LF; Massad E
    Bull Math Biol; 2006 Nov; 68(8):2263-82. PubMed ID: 16952019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling Approach Influences Dynamics of a Vector-Borne Pathogen System.
    Shaw AK; Igoe M; Power AG; Bosque-Pérez NA; Peace A
    Bull Math Biol; 2019 Jun; 81(6):2011-2028. PubMed ID: 30903591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aedes-AI: Neural network models of mosquito abundance.
    Kinney AC; Current S; Lega J
    PLoS Comput Biol; 2021 Nov; 17(11):e1009467. PubMed ID: 34797822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the Effect of a Novel Autodissemination Trap on the Spread of Dengue in Shah Alam and Malaysia.
    Liang Y; Ahmad Mohiddin MN; Bahauddin R; Hidayatul FO; Nazni WA; Lee HL; Greenhalgh D
    Comput Math Methods Med; 2019; 2019():1923479. PubMed ID: 31481976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.
    Jafaruddin ; Indratno SW; Nuraini N; Supriatna AK; Soewono E
    Comput Math Methods Med; 2015; 2015():206131. PubMed ID: 26413140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics.
    Sartori L; Pereira M; Oliva S
    Bull Math Biol; 2022 Sep; 84(11):124. PubMed ID: 36121515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue.
    Li R; Xu L; Bjørnstad ON; Liu K; Song T; Chen A; Xu B; Liu Q; Stenseth NC
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3624-3629. PubMed ID: 30808752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the interplay between human mobility and mosquito borne diseases in urban environments.
    Massaro E; Kondor D; Ratti C
    Sci Rep; 2019 Nov; 9(1):16911. PubMed ID: 31729435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and Practical Identifiability Analysis of Zika Epidemiological Models.
    Tuncer N; Marctheva M; LaBarre B; Payoute S
    Bull Math Biol; 2018 Aug; 80(8):2209-2241. PubMed ID: 29948883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Threshold Dynamics of a Temperature-Dependent Stage-Structured Mosquito Population Model with Nested Delays.
    Wang X; Zou X
    Bull Math Biol; 2018 Jul; 80(7):1962-1987. PubMed ID: 29785519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competitive exclusion in a vector-host model for the dengue fever.
    Feng Z; Velasco-Hernández JX
    J Math Biol; 1997 May; 35(5):523-44. PubMed ID: 9145954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.
    Barrios E; Lee S; Vasilieva O
    J Theor Biol; 2018 Sep; 453():14-39. PubMed ID: 29775680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density.
    Romeo-Aznar V; Paul R; Telle O; Pascual M
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30111594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.