These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31499664)

  • 41. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density.
    Romeo-Aznar V; Paul R; Telle O; Pascual M
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30111594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
    Gulbudak H; Cannataro VL; Tuncer N; Martcheva M
    Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework.
    Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines.
    Salazar F; Angeles J; Sy AK; Inobaya MT; Aguila A; Toner T; Bangs MJ; Thomsen E; Paul RE
    Trials; 2019 May; 20(1):269. PubMed ID: 31088515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment.
    Kao YH; Eisenberg MC
    Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.
    Althouse BM; Lessler J; Sall AA; Diallo M; Hanley KA; Watts DM; Weaver SC; Cummings DA
    PLoS Negl Trop Dis; 2012; 6(11):e1928. PubMed ID: 23209867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mathematical modeling of dengue epidemic: control methods and vaccination strategies.
    Carvalho SA; da Silva SO; Charret IDC
    Theory Biosci; 2019 Nov; 138(2):223-239. PubMed ID: 30740641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex behaviour in a dengue model with a seasonally varying vector population.
    McLennan-Smith TA; Mercer GN
    Math Biosci; 2014 Feb; 248():22-30. PubMed ID: 24291301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effectiveness and economic assessment of routine larviciding for prevention of chikungunya and dengue in temperate urban settings in Europe.
    Guzzetta G; Trentini F; Poletti P; Baldacchino FA; Montarsi F; Capelli G; Rizzoli A; Rosà R; Merler S; Melegaro A
    PLoS Negl Trop Dis; 2017 Sep; 11(9):e0005918. PubMed ID: 28892499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sex, Mosquitoes and Epidemics: An Evaluation of Zika Disease Dynamics.
    Baca-Carrasco D; Velasco-Hernández JX
    Bull Math Biol; 2016 Nov; 78(11):2228-2242. PubMed ID: 27743310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamics of dengue disease with human and vector mobility.
    Enduri MK; Jolad S
    Spat Spatiotemporal Epidemiol; 2018 Jun; 25():57-66. PubMed ID: 29751893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal control for disease vector management in SIT models: an integrodifference equation approach.
    Kura K; Khamis D; El Mouden C; Bonsall MB
    J Math Biol; 2019 May; 78(6):1821-1839. PubMed ID: 30734075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ross-Macdonald models: Which one should we use?
    Simoy MI; Aparicio JP
    Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis.
    Aguiar M; Ballesteros S; Kooi BW; Stollenwerk N
    J Theor Biol; 2011 Nov; 289():181-96. PubMed ID: 21907213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size.
    Liu YF; Sun GW; Wang L; Guo ZM
    Math Biosci Eng; 2019 May; 16(5):4399-4414. PubMed ID: 31499668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal.
    Tuladhar R; Singh A; Banjara MR; Gautam I; Dhimal M; Varma A; Choudhary DK
    Parasit Vectors; 2019 Jan; 12(1):42. PubMed ID: 30658693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling the Heterogeneity of Dengue Transmission in a City.
    Kong L; Wang J; Li Z; Lai S; Liu Q; Wu H; Yang W
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29857503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.