These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31499740)

  • 1. Asymptotic analysis of endemic equilibrium to a brucellosis model.
    Li MT; Pei X; Zhang J; Li L
    Math Biosci Eng; 2019 Jun; 16(5):5836-5850. PubMed ID: 31499740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China.
    Hou Q; Sun X; Zhang J; Liu Y; Wang Y; Jin Z
    Math Biosci; 2013 Mar; 242(1):51-8. PubMed ID: 23313258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China.
    Li M; Sun G; Zhang J; Jin Z; Sun X; Wang Y; Huang B; Zheng Y
    Math Biosci Eng; 2014 Oct; 11(5):1115-37. PubMed ID: 25347802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission.
    Hou Q; Qin HY
    Math Biosci Eng; 2019 Apr; 16(4):3111-3129. PubMed ID: 31137253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic analysis of sheep Brucellosis model with environmental infection pathways.
    Yue Z; Mu Y; Yu K
    Math Biosci Eng; 2023 May; 20(7):11688-11712. PubMed ID: 37501416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China.
    Zhou L; Fan M; Hou Q; Jin Z; Sun X
    Math Biosci Eng; 2018 Apr; 15(2):543-567. PubMed ID: 29161849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for ovine brucellosis incorporating direct and indirect transmission.
    Aïnseba B; Benosman C; Magal P
    J Biol Dyn; 2010 Jan; 4(1):2-11. PubMed ID: 22881067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission dynamics of brucellosis with patch model: Shanxi and Hebei Provinces as cases.
    Qin Y; Pei X; Li M; Chai Y
    Math Biosci Eng; 2022 Apr; 19(6):6396-6414. PubMed ID: 35603408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global stability of an age-structured epidemic model with general Lyapunov functional.
    Chekroun A; Frioui MN; Kuniya T; Touaoula TM
    Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the dynamics of brucellosis infection in bison population with vertical transmission and culling.
    Lolika PO; Modnak C; Mushayabasa S
    Math Biosci; 2018 Nov; 305():42-54. PubMed ID: 30138637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers.
    Manyombe ML; Mbang J; Lubuma J; Tsanou B
    Math Biosci Eng; 2016 Aug; 13(4):813-840. PubMed ID: 27775386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010-2014.
    Lou P; Wang L; Zhang X; Xu J; Wang K
    Biomed Res Int; 2016; 2016():5103718. PubMed ID: 27872852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaccination control programs for multiple livestock host species: an age-stratified, seasonal transmission model for brucellosis control in endemic settings.
    Beauvais W; Musallam I; Guitian J
    Parasit Vectors; 2016 Jan; 9():55. PubMed ID: 26825313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On a two-strain epidemic mathematical model with vaccination.
    Yaagoub Z; Danane J; Allali K
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):632-650. PubMed ID: 37018044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Impact of Seasonal Weather Variations on the Infectiology of Brucellosis.
    Nyerere N; Luboobi LS; Mpeshe SC; Shirima GM
    Comput Math Methods Med; 2020; 2020():8972063. PubMed ID: 33123216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessibility of the three-year comprehensive prevention and control of brucellosis in Ningxia: a mathematical modeling study.
    Gong W; Sun P; Zhai C; Yuan J; Chen Y; Chen Q; Zhao Y
    BMC Infect Dis; 2023 May; 23(1):292. PubMed ID: 37147629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection.
    Alharbi MH
    Math Biosci Eng; 2023 Jan; 20(3):5298-5315. PubMed ID: 36896546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of SIR epidemic models with nonlinear incidence rate and treatment.
    Hu Z; Ma W; Ruan S
    Math Biosci; 2012 Jul; 238(1):12-20. PubMed ID: 22516532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model to assess vaccination and effective contact rate impact in the spread of tuberculosis.
    Nkamba LN; Manga TT; Agouanet F; Mann Manyombe ML
    J Biol Dyn; 2019 Dec; 13(1):26-42. PubMed ID: 31793413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical behaviors of an Echinococcosis epidemic model with distributed delays.
    Wang K; Teng Z; Zhang X
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1425-1445. PubMed ID: 29161869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.