These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31499758)
1. Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation. León I; Pazó D Phys Rev E; 2019 Jul; 100(1-1):012211. PubMed ID: 31499758 [TBL] [Abstract][Full Text] [Related]
2. Enlarged Kuramoto model: Secondary instability and transition to collective chaos. León I; Pazó D Phys Rev E; 2022 Apr; 105(4):L042201. PubMed ID: 35590592 [TBL] [Abstract][Full Text] [Related]
3. Phase reduction explains chimera shape: When multibody interaction matters. Mau ETK; Omel'chenko OE; Rosenblum M Phys Rev E; 2024 Aug; 110(2):L022201. PubMed ID: 39295061 [TBL] [Abstract][Full Text] [Related]
5. Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation. Howard M; van Hecke M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026213. PubMed ID: 14525090 [TBL] [Abstract][Full Text] [Related]
6. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
7. Lattice Boltzmann model for the complex Ginzburg-Landau equation. Zhang J; Yan G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066705. PubMed ID: 20866542 [TBL] [Abstract][Full Text] [Related]
8. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation. Ipsen M; Sorensen PG Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892 [TBL] [Abstract][Full Text] [Related]
9. Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms. Facão M; Carvalho MI Phys Rev E; 2017 Oct; 96(4-1):042220. PubMed ID: 29347498 [TBL] [Abstract][Full Text] [Related]
11. Arnold tongues in oscillator systems with nonuniform spatial driving. Golden A; Sgro AE; Mehta P Phys Rev E; 2021 Apr; 103(4-1):042211. PubMed ID: 34005969 [TBL] [Abstract][Full Text] [Related]
12. Modulated amplitude waves and the transition from phase to defect chaos. Brusch L; Zimmermann MG; van Hecke M ; Bar M; Torcini A Phys Rev Lett; 2000 Jul; 85(1):86-9. PubMed ID: 10991165 [TBL] [Abstract][Full Text] [Related]
13. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
14. Existence and stability of solutions of the cubic complex Ginzburg-Landau equation with delayed Raman scattering. Facão M; Carvalho MI Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022922. PubMed ID: 26382490 [TBL] [Abstract][Full Text] [Related]
15. Coupling of low-frequency modes with the complex Ginzburg-Landau equation: Generalized Zakharov equations. Erichsen R; Brunnet LG; Rizzato FB Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6566-70. PubMed ID: 11970575 [TBL] [Abstract][Full Text] [Related]
16. Experiments on oscillator ensembles with global nonlinear coupling. Temirbayev AA; Zhanabaev ZZh; Tarasov SB; Ponomarenko VI; Rosenblum M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):015204. PubMed ID: 22400613 [TBL] [Abstract][Full Text] [Related]
17. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
18. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
19. Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles. Gong CC; Pikovsky A Phys Rev E; 2019 Dec; 100(6-1):062210. PubMed ID: 31962527 [TBL] [Abstract][Full Text] [Related]
20. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Tsoy EN; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]