These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31499780)
1. Reconstructing positive and negative couplings in Ising spin networks by sorted local transfer entropy. Goetze F; Lai PY Phys Rev E; 2019 Jul; 100(1-1):012121. PubMed ID: 31499780 [TBL] [Abstract][Full Text] [Related]
2. Inverse spin glass and related maximum entropy problems. Castellana M; Bialek W Phys Rev Lett; 2014 Sep; 113(11):117204. PubMed ID: 25260004 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
4. Reconstructing signed networks via Ising dynamics. Xiang BB; Ma C; Chen HS; Zhang HF Chaos; 2018 Dec; 28(12):123117. PubMed ID: 30599526 [TBL] [Abstract][Full Text] [Related]
5. Rényi information flow in the Ising model with single-spin dynamics. Deng Z; Wu J; Guo W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063308. PubMed ID: 25615223 [TBL] [Abstract][Full Text] [Related]
6. Inverse Ising problem in continuous time: A latent variable approach. Donner C; Opper M Phys Rev E; 2017 Dec; 96(6-1):062104. PubMed ID: 29347355 [TBL] [Abstract][Full Text] [Related]
7. Nonequilibrium antiferromagnetic mixed-spin Ising model. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208 [TBL] [Abstract][Full Text] [Related]
8. Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field. Keskin M; Ertaş M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061140. PubMed ID: 20365151 [TBL] [Abstract][Full Text] [Related]
9. Reconstructing the Hopfield network as an inverse Ising problem. Huang H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036104. PubMed ID: 20365812 [TBL] [Abstract][Full Text] [Related]
10. Phase transformation in a lattice system in the presence of spin-exchange dynamics. Berim GO; Ruckenstein E J Chem Phys; 2004 Feb; 120(6):2851-6. PubMed ID: 15268432 [TBL] [Abstract][Full Text] [Related]
11. Mean-field theory for the inverse Ising problem at low temperatures. Nguyen HC; Berg J Phys Rev Lett; 2012 Aug; 109(5):050602. PubMed ID: 23006160 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics. Lai PY Phys Rev E; 2017 Feb; 95(2-1):022311. PubMed ID: 28297975 [TBL] [Abstract][Full Text] [Related]
13. Dynamic scaling in the two-dimensional Ising spin glass with normal-distributed couplings. Xu N; Wu KH; Rubin SJ; Kao YJ; Sandvik AW Phys Rev E; 2017 Nov; 96(5-1):052102. PubMed ID: 29347699 [TBL] [Abstract][Full Text] [Related]
14. Inferring structural connectivity using Ising couplings in models of neuronal networks. Kadirvelu B; Hayashi Y; Nasuto SJ Sci Rep; 2017 Aug; 7(1):8156. PubMed ID: 28811468 [TBL] [Abstract][Full Text] [Related]
15. Ising-like model replicating time-averaged spiking behaviour of in vitro neuronal networks. Sampaio Filho CIN; de Arcangelis L; Herrmann HJ; Plenz D; Kells P; Ribeiro TL; Andrade JS Sci Rep; 2024 Mar; 14(1):7002. PubMed ID: 38523136 [TBL] [Abstract][Full Text] [Related]
17. Wavelength-division multiplexing optical Ising simulator enabling fully programmable spin couplings and external magnetic fields. Luo L; Mi Z; Huang J; Ruan Z Sci Adv; 2023 Dec; 9(48):eadg6238. PubMed ID: 38039362 [TBL] [Abstract][Full Text] [Related]
18. Learning and inference in a nonequilibrium Ising model with hidden nodes. Dunn B; Roudi Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022127. PubMed ID: 23496479 [TBL] [Abstract][Full Text] [Related]
19. Effect of geometrical frustration on inverse freezing. Schmidt M; Morais CV; Zimmer FM Phys Rev E; 2016 Jan; 93(1):012147. PubMed ID: 26871062 [TBL] [Abstract][Full Text] [Related]
20. Normal and inverse magnetocaloric effect in magnetic multilayers with antiferromagnetic interlayer coupling. Szałowski K; Balcerzak T J Phys Condens Matter; 2014 Sep; 26(38):386003. PubMed ID: 25186229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]