These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31499794)

  • 21. Arbitrary-Shape Dielectric Particles Interacting in the Linearized Poisson-Boltzmann Framework: An Analytical Treatment.
    Siryk SV; Rocchia W
    J Phys Chem B; 2022 Dec; 126(49):10400-10426. PubMed ID: 36473089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatic image effects for counterions between charged planar walls.
    Kanduc M; Podgornik R
    Eur Phys J E Soft Matter; 2007 Jul; 23(3):265-74. PubMed ID: 17641819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoscale Electrostatics Driving Particle Dynamics in Nonhomogeneous Dielectrics.
    Bore SL; Kolli HB; Kawakatsu T; Milano G; Cascella M
    J Chem Theory Comput; 2019 Mar; 15(3):2033-2041. PubMed ID: 30694666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A force consistent method for electrostatic energy calculation in fluctuating charge model.
    Duan G; Ji C; Zhang JZH
    J Chem Phys; 2019 Sep; 151(9):094105. PubMed ID: 31492061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.
    Bauer S; Mathias G; Tavan P
    J Chem Phys; 2014 Mar; 140(10):104102. PubMed ID: 24628147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic interaction between two charged spherical molecules.
    Ohshima H; Mishonova E; Alexov E
    Biophys Chem; 1996 Jan; 57(2-3):189-203. PubMed ID: 17023339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of mean force between charged colloids: effect of dielectric discontinuities.
    Rescic J; Linse P
    J Chem Phys; 2008 Sep; 129(11):114505. PubMed ID: 19044967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discretization of the induced-charge boundary integral equation.
    Bardhan JP; Eisenberg RS; Gillespie D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011906. PubMed ID: 19658728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charged cylindrical surfaces: effect of finite ion size.
    Bohinc K; Iglic A; Slivnik T; Kralj-Iglic V
    Bioelectrochemistry; 2002 Jul; 57(1):73-81. PubMed ID: 12049759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics.
    Başkal S; Kim YS
    J Opt Soc Am A Opt Image Sci Vis; 2009 Sep; 26(9):2049-54. PubMed ID: 19721691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An analytical approach to computing biomolecular electrostatic potential. I. Derivation and analysis.
    Fenley AT; Gordon JC; Onufriev A
    J Chem Phys; 2008 Aug; 129(7):075101. PubMed ID: 19044802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Casimir forces between arbitrary compact objects.
    Emig T; Graham N; Jaffe RL; Kardar M
    Phys Rev Lett; 2007 Oct; 99(17):170403. PubMed ID: 17995304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency dielectric response of a periodic array of charged spheres in an electrolyte solution: The simple cubic lattice.
    Hou CY; Qian J; Freed DE
    Phys Rev E; 2019 Mar; 99(3-1):032604. PubMed ID: 30999468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Order N algorithm for computation of electrostatic interactions in biomolecular systems.
    Lu B; Cheng X; Huang J; McCammon JA
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19314-9. PubMed ID: 17148613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods.
    Cisneros GA; Piquemal JP; Darden TA
    J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.