These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31499807)

  • 1. Complex dynamical interplay between solid particles and flow in driven granular suspensions.
    Yamanaka S; Furukawa A; Tanaka H
    Phys Rev E; 2019 Jul; 100(1-1):012907. PubMed ID: 31499807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jamming of particles in a two-dimensional fluid-driven flow.
    Guariguata A; Pascall MA; Gilmer MW; Sum AK; Sloan ED; Koh CA; Wu DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061311. PubMed ID: 23367936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point.
    Ness C; Xing Z; Eiser E
    Soft Matter; 2017 May; 13(19):3664-3674. PubMed ID: 28451674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interactions in dense active suspensions: From polar order to dynamical clusters.
    Yoshinaga N; Liverpool TB
    Phys Rev E; 2017 Aug; 96(2-1):020603. PubMed ID: 28950552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective dynamics of flowing colloids during pore clogging.
    Agbangla GC; Bacchin P; Climent E
    Soft Matter; 2014 Sep; 10(33):6303-15. PubMed ID: 25029591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Surface Chemistry to the Shear Thickening of Silica Nanoparticle Suspensions.
    Yang W; Wu Y; Pei X; Zhou F; Xue Q
    Langmuir; 2017 Jan; 33(4):1037-1042. PubMed ID: 28052198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers.
    Yoshinaga N; Liverpool TB
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):76. PubMed ID: 29926216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic Interactions Can Induce Jamming in Flow-Driven Systems.
    Cereceda-López E; Lips D; Ortiz-Ambriz A; Ryabov A; Maass P; Tierno P
    Phys Rev Lett; 2021 Nov; 127(21):214501. PubMed ID: 34860099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of immersed granular avalanches.
    Mutabaruka P; Delenne JY; Soga K; Radjai F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052203. PubMed ID: 25353783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis.
    Rose KA; Hoffman B; Saintillan D; Shaqfeh ES; Santiago JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011402. PubMed ID: 19257030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular flow of cylinder-like particles in a cylindrical hopper under external pressure based on DEM simulations.
    Wang S; Zhuravkov M; Ji S
    Soft Matter; 2020 Sep; 16(33):7760-7777. PubMed ID: 32744286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong magnetic field effects on solid-liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles.
    Sun ZH; Zhang X; Guo M; Pandelaers L; Vleugels J; Van der Biest O; Van Reusel K; Blanpain B
    J Colloid Interface Sci; 2012 Jun; 375(1):203-12. PubMed ID: 22443967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Evidence of Thermal-Like Behavior in Dense Granular Suspensions.
    Sakaï N; Moulinet S; Lechenault F; Adda-Bedia M
    Phys Rev Lett; 2019 Apr; 122(16):168001. PubMed ID: 31075033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular-front formation in free-surface flow of concentrated suspensions.
    Leonardi A; Cabrera M; Wittel FK; Kaitna R; Mendoza M; Wu W; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052204. PubMed ID: 26651686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interactions hinder transport of flow-driven colloidal particles.
    Lips D; Cereceda-López E; Ortiz-Ambriz A; Tierno P; Ryabov A; Maass P
    Soft Matter; 2022 Dec; 18(47):8983-8994. PubMed ID: 36383199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.
    Ley MW; Bruus H
    Lab Chip; 2016 Apr; 16(7):1178-88. PubMed ID: 26948344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling shear jamming in dense suspensions via the particle aspect ratio.
    James NM; Xue H; Goyal M; Jaeger HM
    Soft Matter; 2019 May; 15(18):3649-3654. PubMed ID: 30994148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids.
    Kijanski N; Krach D; Steeb H
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.