These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31499815)
21. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. Benzi R; Biferale L; Sbragaglia M; Succi S; Toschi F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021509. PubMed ID: 17025439 [TBL] [Abstract][Full Text] [Related]
22. Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio. Wöhrwag M; Semprebon C; Mazloomi Moqaddam A; Karlin I; Kusumaatmaja H Phys Rev Lett; 2018 Jun; 120(23):234501. PubMed ID: 29932686 [TBL] [Abstract][Full Text] [Related]
23. Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. Zhang J; Li B; Kwok DY Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):032602. PubMed ID: 15089339 [TBL] [Abstract][Full Text] [Related]
24. Improved partially saturated method for the lattice Boltzmann pseudopotential multicomponent flows. Wang G; D'Ortona U; Guichardon P Phys Rev E; 2023 Mar; 107(3-2):035301. PubMed ID: 37072946 [TBL] [Abstract][Full Text] [Related]
25. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
26. Finite-element lattice Boltzmann simulations of contact line dynamics. Matin R; Krzysztof Misztal M; Hernández-García A; Mathiesen J Phys Rev E; 2018 Jan; 97(1-1):013307. PubMed ID: 29448363 [TBL] [Abstract][Full Text] [Related]
27. Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann method coupled with the smoothed profile method. Lee YK; Ahn KH Phys Rev E; 2020 May; 101(5-1):053302. PubMed ID: 32575323 [TBL] [Abstract][Full Text] [Related]
28. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175 [TBL] [Abstract][Full Text] [Related]
29. Apparent slip over a solid-liquid interface with a no-slip boundary condition. Zhang J; Kwok DY Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056701. PubMed ID: 15600790 [TBL] [Abstract][Full Text] [Related]
30. Multiphase lattice Boltzmann method for particle suspensions. Joshi AS; Sun Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066703. PubMed ID: 19658621 [TBL] [Abstract][Full Text] [Related]
31. On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmann approach. Zhang J; Kwok DY J Colloid Interface Sci; 2005 Feb; 282(2):434-8. PubMed ID: 15589550 [TBL] [Abstract][Full Text] [Related]
32. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. Hughes AP; Thiele U; Archer AJ J Chem Phys; 2015 Feb; 142(7):074702. PubMed ID: 25702019 [TBL] [Abstract][Full Text] [Related]
33. Lattice Boltzmann simulation of three-phase flows with moving contact lines on curved surfaces. Li S; Lu Y; Jiang F; Liu H Phys Rev E; 2021 Jul; 104(1-2):015310. PubMed ID: 34412346 [TBL] [Abstract][Full Text] [Related]
34. Lattice Boltzmann models for nonequilibrium gas flows. Tang GH; Zhang YH; Emerson DR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046701. PubMed ID: 18517753 [TBL] [Abstract][Full Text] [Related]