These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31499815)

  • 41. Investigations of drop impact on dry walls with a lattice-Boltzmann model.
    Mukherjee S; Abraham J
    J Colloid Interface Sci; 2007 Aug; 312(2):341-54. PubMed ID: 17418858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics.
    Yu Y; Liang D; Liu H
    Phys Rev E; 2019 Jan; 99(1-1):013308. PubMed ID: 30780284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study.
    Joshi AS; Sun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041401. PubMed ID: 21230271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method.
    Li Q; Zhou P; Yan HJ
    Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lattice Boltzmann simulations of incompressible liquid-gas systems on partial wetting surfaces.
    Shih CH; Wu CL; Chang LC; Lin CA
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2510-8. PubMed ID: 21576166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change.
    Chen Z; Shu C; Yang LM; Zhao X; Liu NY
    Phys Rev E; 2021 Feb; 103(2-1):023308. PubMed ID: 33736036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.
    Lee JB; Dos Santos S; Antonini C
    Langmuir; 2016 Aug; 32(32):8245-54. PubMed ID: 27452333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Static contact angle in lattice Boltzmann models of immiscible fluids.
    Latva-Kokko M; Rothman DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046701. PubMed ID: 16383561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lattice Boltzmann modeling of three-phase incompressible flows.
    Liang H; Shi BC; Chai ZH
    Phys Rev E; 2016 Jan; 93(1):013308. PubMed ID: 26871191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drops on an arbitrarily wetting substrate: a phase field description.
    Borcia R; Borcia ID; Bestehorn M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066307. PubMed ID: 19256945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
    Ravipati S; Aymard B; Kalliadasis S; Galindo A
    J Chem Phys; 2018 Apr; 148(16):164704. PubMed ID: 29716213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fugacity-based lattice Boltzmann method for multicomponent multiphase systems.
    Soomro M; Ayala LF; Peng C; Ayala OM
    Phys Rev E; 2023 Jan; 107(1-2):015304. PubMed ID: 36797960
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.
    Colosqui CE; Kavousanakis ME; Papathanasiou AG; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013302. PubMed ID: 23410455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of high-viscosity-ratio multicomponent fluid flow using a pseudopotential model based on the nonorthogonal central-moments lattice Boltzmann method.
    Gharibi F; Ashrafizaadeh M
    Phys Rev E; 2020 Apr; 101(4-1):043311. PubMed ID: 32422822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling ternary fluids in contact with elastic membranes.
    Pepona M; Shek ACM; Semprebon C; Krüger T; Kusumaatmaja H
    Phys Rev E; 2021 Feb; 103(2-1):022112. PubMed ID: 33735964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.