These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31499815)
61. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations. Blossey R; Maggs AC; Podgornik R Phys Rev E; 2017 Jun; 95(6-1):060602. PubMed ID: 28709364 [TBL] [Abstract][Full Text] [Related]
62. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces. Huang JJ; Wu J; Huang H Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782 [TBL] [Abstract][Full Text] [Related]
63. Reply to "Comment on 'Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations'". Luo LS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):048701. PubMed ID: 23214711 [TBL] [Abstract][Full Text] [Related]
64. A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition. Fernández-Toledano JC; Blake TD; Limat L; De Coninck J J Colloid Interface Sci; 2019 Jul; 548():66-76. PubMed ID: 30986712 [TBL] [Abstract][Full Text] [Related]
65. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation. Frapolli N; Chikatamarla SS; Karlin IV Phys Rev E; 2016 Jun; 93(6):063302. PubMed ID: 27415382 [TBL] [Abstract][Full Text] [Related]
66. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Li Q; Luo KH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895 [TBL] [Abstract][Full Text] [Related]
67. Lattice Boltzmann simulation of thermal nonideal fluids. Gonnella G; Lamura A; Sofonea V Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036703. PubMed ID: 17930357 [TBL] [Abstract][Full Text] [Related]
68. Scaling of dynamic contact angles in a lattice-Boltzmann model. Latva-Kokko M; Rothman DH Phys Rev Lett; 2007 Jun; 98(25):254503. PubMed ID: 17678029 [TBL] [Abstract][Full Text] [Related]
69. Nanodroplets on a planar solid surface: temperature, pressure, and size dependence of their density and contact angles. Berim GO; Ruckenstein E Langmuir; 2006 Jan; 22(3):1063-73. PubMed ID: 16430266 [TBL] [Abstract][Full Text] [Related]
70. Compressible cell gas models for asymmetric fluid criticality. Cerdeiriña CA; Orkoulas G Phys Rev E; 2017 Mar; 95(3-1):032105. PubMed ID: 28415250 [TBL] [Abstract][Full Text] [Related]
71. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip. Moqtaderi H; Esfahanian V Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2193-201. PubMed ID: 21536565 [TBL] [Abstract][Full Text] [Related]
72. Rayleigh-Plateau Instability of a Particle-Laden Liquid Column: A Lattice Boltzmann Study. Zhang X; Zhang J; Liu H; Jia P Langmuir; 2022 Mar; 38(11):3453-3468. PubMed ID: 35274953 [TBL] [Abstract][Full Text] [Related]
73. Lattice-Boltzmann algorithm for simulating thermal two-phase flow. Palmer BJ; Rector DR Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5295-306. PubMed ID: 11031577 [TBL] [Abstract][Full Text] [Related]
74. Theoretical and numerical study of axisymmetric lattice Boltzmann models. Huang H; Lu XY Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832 [TBL] [Abstract][Full Text] [Related]
75. Nudged elastic band calculation of the binding potential for liquids at interfaces. Buller O; Tewes W; Archer AJ; Heuer A; Thiele U; Gurevich SV J Chem Phys; 2017 Jul; 147(2):024701. PubMed ID: 28711062 [TBL] [Abstract][Full Text] [Related]
76. Implementation of contact line motion based on the phase-field lattice Boltzmann method. Ju L; Guo Z; Yan B; Sun S Phys Rev E; 2024 Apr; 109(4-2):045307. PubMed ID: 38755877 [TBL] [Abstract][Full Text] [Related]
77. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies. Küllmer K; Krämer A; Joppich W; Reith D; Foysi H Phys Rev E; 2018 Feb; 97(2-1):023313. PubMed ID: 29548255 [TBL] [Abstract][Full Text] [Related]
78. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Peng C; Geneva N; Guo Z; Wang LP Phys Rev E; 2017 Jan; 95(1-1):013301. PubMed ID: 28208327 [TBL] [Abstract][Full Text] [Related]