These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Baugh J; Moussa O; Ryan CA; Nayak A; Laflamme R Nature; 2005 Nov; 438(7067):470-3. PubMed ID: 16306986 [TBL] [Abstract][Full Text] [Related]
3. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related]
4. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
5. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of quantum Otto and Carnot engines powered by a spin working substance. Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157 [TBL] [Abstract][Full Text] [Related]
7. Dynamical control of quantum heat engines using exceptional points. Zhang JW; Zhang JQ; Ding GY; Li JC; Bu JT; Wang B; Yan LL; Su SL; Chen L; Nori F; Özdemir ŞK; Zhou F; Jing H; Feng M Nat Commun; 2022 Oct; 13(1):6225. PubMed ID: 36266331 [TBL] [Abstract][Full Text] [Related]
8. Spin based heat engine: demonstration of multiple rounds of algorithmic cooling. Ryan CA; Moussa O; Baugh J; Laflamme R Phys Rev Lett; 2008 Apr; 100(14):140501. PubMed ID: 18518015 [TBL] [Abstract][Full Text] [Related]
9. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
10. Non-Markovian thermal operations boosting the performance of quantum heat engines. Ptaszyński K Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499 [TBL] [Abstract][Full Text] [Related]
11. Boosting the performance of quantum Otto heat engines. Chen JF; Sun CP; Dong H Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026 [TBL] [Abstract][Full Text] [Related]
12. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. El Makouri A; Slaoui A; Ahl Laamara R Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648 [TBL] [Abstract][Full Text] [Related]
13. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Deffner S Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599 [TBL] [Abstract][Full Text] [Related]
15. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
17. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels. de Oliveira TR; Jonathan D Phys Rev E; 2021 Oct; 104(4-1):044133. PubMed ID: 34781508 [TBL] [Abstract][Full Text] [Related]
18. Extracting work from a single thermal bath via quantum negentropy. Scully MO Phys Rev Lett; 2001 Nov; 87(22):220601. PubMed ID: 11736390 [TBL] [Abstract][Full Text] [Related]
19. Novel Technique for Robust Optimal Algorithmic Cooling. Raeisi S; Kieferová M; Mosca M Phys Rev Lett; 2019 Jun; 122(22):220501. PubMed ID: 31283276 [TBL] [Abstract][Full Text] [Related]
20. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath. Abasabadi SH; Mirafzali SY; Baghshahi HR Sci Rep; 2023 Jun; 13(1):10522. PubMed ID: 37386051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]