These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31499979)
1. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. Etchenausia L; Villar-Alvarez E; Forcada J; Save M; Taboada P Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109871. PubMed ID: 31499979 [TBL] [Abstract][Full Text] [Related]
2. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids. Zhang C; Gau E; Sun W; Zhu J; Schmidt BM; Pich A; Shi X Biomater Sci; 2019 Nov; 7(11):4738-4747. PubMed ID: 31502601 [TBL] [Abstract][Full Text] [Related]
3. Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Wang Y; Nie J; Chang B; Sun Y; Yang W Biomacromolecules; 2013 Sep; 14(9):3034-46. PubMed ID: 23909593 [TBL] [Abstract][Full Text] [Related]
4. Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Kavitha T; Kang IK; Park SY Colloids Surf B Biointerfaces; 2014 Mar; 115():37-45. PubMed ID: 24316754 [TBL] [Abstract][Full Text] [Related]
5. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Farjadian F; Rezaeifard S; Naeimi M; Ghasemi S; Mohammadi-Samani S; Welland ME; Tayebi L Int J Nanomedicine; 2019; 14():6901-6915. PubMed ID: 31564860 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic fabrication of biocompatible poly(N-vinylcaprolactam)-based microcarriers for modulated thermo-responsive drug release. Roh YH; Moon JY; Hong EJ; Kim HU; Shim MS; Bong KW Colloids Surf B Biointerfaces; 2018 Dec; 172():380-386. PubMed ID: 30193197 [TBL] [Abstract][Full Text] [Related]
7. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery. Zavgorodnya O; Carmona-Moran CA; Kozlovskaya V; Liu F; Wick TM; Kharlampieva E J Colloid Interface Sci; 2017 Nov; 506():589-602. PubMed ID: 28759859 [TBL] [Abstract][Full Text] [Related]
8. Polyphenolic Polymersomes of Temperature-Sensitive Poly(N-vinylcaprolactam)-block-Poly(N-vinylpyrrolidone) for Anticancer Therapy. Kozlovskaya V; Liu F; Xue B; Ahmad F; Alford A; Saeed M; Kharlampieva E Biomacromolecules; 2017 Aug; 18(8):2552-2563. PubMed ID: 28700211 [TBL] [Abstract][Full Text] [Related]
10. Colloidal Stability of Silk Fibroin Nanoparticles Coated with Cationic Polymer for Effective Drug Delivery. Wang S; Xu T; Yang Y; Shao Z ACS Appl Mater Interfaces; 2015 Sep; 7(38):21254-62. PubMed ID: 26331584 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery. Wu JZ; Bremner DH; Li HY; Sun XZ; Zhu LM Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1026-35. PubMed ID: 27612799 [TBL] [Abstract][Full Text] [Related]
12. Glucose-Sensitive Nanoparticles Based On Poly(3-Acrylamidophenylboronic Acid-Block-N-Vinylcaprolactam) For Insulin Delivery. Wu JZ; Yang Y; Li S; Shi A; Song B; Niu S; Chen W; Yao Z Int J Nanomedicine; 2019; 14():8059-8072. PubMed ID: 31632018 [TBL] [Abstract][Full Text] [Related]
14. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
15. Core-shell nanostructures from single poly(N-vinylcaprolactam) macromolecules: stabilization and visualization. Bronstein LM; Kostylev M; Tsvetkova I; Tomaszewski J; Stein B; Makhaeva EE; Okhapkin I; Khokhlov AR Langmuir; 2005 Mar; 21(7):2652-5. PubMed ID: 15779928 [TBL] [Abstract][Full Text] [Related]
16. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
17. Fibrin Hydrogels Reinforced by Reactive Microgels for Stimulus-Triggered Drug Administration. Al Enezy-Ulbrich MA; Belthle T; Malyaran H; Kučikas V; Küttner H; de Lange RD; van Zandvoort M; Neuss S; Pich A Small; 2024 Oct; 20(42):e2309912. PubMed ID: 38898722 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Guo M; Que C; Wang C; Liu X; Yan H; Liu K Biomaterials; 2011 Jan; 32(1):185-94. PubMed ID: 21067808 [TBL] [Abstract][Full Text] [Related]
19. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle. He M; Potuck A; Kohn JC; Fung K; Reinhart-King CA; Chu CC Biomacromolecules; 2016 Feb; 17(2):523-37. PubMed ID: 26650653 [TBL] [Abstract][Full Text] [Related]
20. Microgels for long-term storage of vitamins for extended spaceflight. Schroeder R Life Sci Space Res (Amst); 2018 Feb; 16():26-37. PubMed ID: 29475517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]