These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31500132)

  • 1. Roles of Glutamate Receptors in Parkinson's Disease.
    Zhang Z; Zhang S; Fu P; Zhang Z; Lin K; Ko JK; Yung KK
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate receptors and Parkinson's disease: opportunities for intervention.
    Marino MJ; Valenti O; Conn PJ
    Drugs Aging; 2003; 20(5):377-97. PubMed ID: 12696997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate receptors as therapeutic targets for Parkinson's disease.
    Johnson KA; Conn PJ; Niswender CM
    CNS Neurol Disord Drug Targets; 2009 Dec; 8(6):475-91. PubMed ID: 19702565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects of glutamate antagonists in the therapy of Parkinson's disease.
    Blandini F; Greenamyre JT
    Fundam Clin Pharmacol; 1998; 12(1):4-12. PubMed ID: 9523179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate and Parkinson's disease.
    Blandini F; Porter RH; Greenamyre JT
    Mol Neurobiol; 1996 Feb; 12(1):73-94. PubMed ID: 8732541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamatergic influences on the basal ganglia.
    Greenamyre JT
    Clin Neuropharmacol; 2001; 24(2):65-70. PubMed ID: 11307040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease.
    Mela F; Marti M; Dekundy A; Danysz W; Morari M; Cenci MA
    J Neurochem; 2007 Apr; 101(2):483-97. PubMed ID: 17359492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson's disease.
    Armentero MT; Fancellu R; Nappi G; Bramanti P; Blandini F
    Neurobiol Dis; 2006 Apr; 22(1):1-9. PubMed ID: 16289868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate and NMDA receptors activation leads to cerebellar dysfunction and impaired motor coordination in unilateral 6-hydroxydopamine lesioned Parkinson's rat: functional recovery with bone marrow cells, serotonin and GABA.
    Nandhu MS; Paul J; Kuruvila KP; Abraham PM; Antony S; Paulose CS
    Mol Cell Biochem; 2011 Jul; 353(1-2):47-57. PubMed ID: 21384157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtype selective antagonism of substantia nigra pars compacta Group I metabotropic glutamate receptors protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo.
    Vernon AC; Zbarsky V; Datla KP; Croucher MJ; Dexter DT
    J Neurochem; 2007 Nov; 103(3):1075-91. PubMed ID: 17714448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson's disease.
    Bonsi P; Cuomo D; Picconi B; Sciamanna G; Tscherter A; Tolu M; Bernardi G; Calabresi P; Pisani A
    Amino Acids; 2007 Feb; 32(2):189-95. PubMed ID: 16715415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells.
    Iovino L; Tremblay ME; Civiero L
    J Pharmacol Sci; 2020 Nov; 144(3):151-164. PubMed ID: 32807662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease.
    Plaitakis A; Shashidharan P
    J Neurol; 2000 Apr; 247 Suppl 2():II25-35. PubMed ID: 10991662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine/glutamate interactions in Parkinson's disease.
    Lange KW; Kornhuber J; Riederer P
    Neurosci Biobehav Rev; 1997 Jul; 21(4):393-400. PubMed ID: 9195597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson's disease.
    Murray TK; Whalley K; Robinson CS; Ward MA; Hicks CA; Lodge D; Vandergriff JL; Baumbarger P; Siuda E; Gates M; Ogden AM; Skolnick P; Zimmerman DM; Nisenbaum ES; Bleakman D; O'Neill MJ
    J Pharmacol Exp Ther; 2003 Aug; 306(2):752-62. PubMed ID: 12730350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease.
    Shejul PP; Doshi GM
    Cent Nerv Syst Agents Med Chem; 2024; 24(1):22-44. PubMed ID: 38273763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in neurotransmitter co-release in Parkinson's disease.
    Barcomb K; Ford CP
    Exp Neurol; 2023 Dec; 370():114562. PubMed ID: 37802381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson's disease.
    Starr MS
    Synapse; 1995 Apr; 19(4):264-93. PubMed ID: 7792721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra.
    Chatha BT; Bernard V; Streit P; Bolam JP
    Neuroscience; 2000; 101(4):1037-51. PubMed ID: 11113353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA antagonists as Parkinson's disease therapy: disseminating the evidence.
    Majláth Z; Vécsei L
    Neurodegener Dis Manag; 2014; 4(1):23-30. PubMed ID: 24640976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.