BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31500150)

  • 1. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat lodging extraction using Improved_Unet network.
    Yu J; Cheng T; Cai N; Lin F; Zhou XG; Du S; Zhang D; Zhang G; Liang D
    Front Plant Sci; 2022; 13():1009835. PubMed ID: 36247550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature.
    Wang J; Wu B; Kohnen MV; Lin D; Yang C; Wang X; Qiang A; Liu W; Kang J; Li H; Shen J; Yao T; Su J; Li B; Gu L
    Plant Phenomics; 2021; 2021():9765952. PubMed ID: 33851136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model.
    Yang B; Zhu Y; Zhou S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image.
    Sun Q; Sun L; Shu M; Gu X; Yang G; Zhou L
    Plant Phenomics; 2019; 2019():5704154. PubMed ID: 33313529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic grading evaluation of winter wheat lodging based on deep learning.
    Zang H; Su X; Wang Y; Li G; Zhang J; Zheng G; Hu W; Shen H
    Front Plant Sci; 2024; 15():1284861. PubMed ID: 38726297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.
    Zhou C; Ye H; Hu J; Shi X; Hua S; Yue J; Xu Z; Yang G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits.
    Wu D; Wu D; Feng H; Duan L; Dai G; Liu X; Wang K; Yang P; Chen G; Gay AP; Doonan JH; Niu Z; Xiong L; Yang W
    Plant Commun; 2021 Mar; 2(2):100165. PubMed ID: 33898978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Rice Lodging Risk from the Distribution of Available Nitrogen in Soil Using UAS Images in a Paddy Field.
    Sato NK; Tsuji T; Iijima Y; Sekiya N; Watanabe K
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring.
    Jiang J; Zheng H; Ji X; Cheng T; Tian Y; Zhu Y; Cao W; Ehsani R; Yao X
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30759869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-GarcĂ­a B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images.
    Zhang P; Sun X; Zhang D; Yang Y; Wang Z
    Plant Phenomics; 2023; 5():0123. PubMed ID: 38047001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight Detection System with Global Attention Network (GloAN) for Rice Lodging.
    Kang G; Wang J; Zeng F; Cai Y; Kang G; Yue X
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating how lodging affects maize yield estimation based on UAV observations.
    Liu Y; Nie C; Zhang Z; Wang Z; Ming B; Xue J; Yang H; Xu H; Meng L; Cui N; Wu W; Jin X
    Front Plant Sci; 2022; 13():979103. PubMed ID: 36733603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispectral Drone Imagery and SRGAN for Rapid Phenotypic Mapping of Individual Chinese Cabbage Plants.
    Zhang J; Wang X; Liu J; Zhang D; Lu Y; Zhou Y; Sun L; Hou S; Fan X; Shen S; Zhao J
    Plant Phenomics; 2022; 2022():0007. PubMed ID: 37266137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.