These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31500152)

  • 1. Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information.
    Xuan P; Zhang Y; Zhang T; Li L; Zhao L
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.
    Xuan P; Li L; Zhang T; Zhang Y; Song Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization.
    Ha J; Park C; Park C; Park S
    Cells; 2020 Apr; 9(4):. PubMed ID: 32260218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of potential disease-associated microRNAs based on random walk.
    Xuan P; Han K; Guo Y; Li J; Li X; Zhong Y; Zhang Z; Ding J
    Bioinformatics; 2015 Jun; 31(11):1805-15. PubMed ID: 25618864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network.
    Zhong Y; Xuan P; Wang X; Zhang T; Li J; Liu Y; Zhang W
    Bioinformatics; 2018 Jan; 34(2):267-277. PubMed ID: 28968753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs.
    Xuan P; Dong Y; Guo Y; Zhang T; Liu Y
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities.
    Lan W; Wang J; Li M; Liu J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1774-1782. PubMed ID: 27392365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPLHRNMTF: robust orthogonal non-negative matrix tri-factorization with self-paced learning and dual hypergraph regularization for predicting miRNA-disease associations.
    Ouyang D; Miao R; Zeng J; Li X; Ai N; Wang P; Hou J; Zheng J
    BMC Genomics; 2024 Sep; 25(1):885. PubMed ID: 39304826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.
    Wang SH; Wang CC; Huang L; Miao LY; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.
    Sun D; Li A; Feng H; Wang M
    Mol Biosyst; 2016 Jun; 12(7):2224-32. PubMed ID: 27153230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations.
    Xiao Q; Luo J; Liang C; Cai J; Ding P
    Bioinformatics; 2018 Jan; 34(2):239-248. PubMed ID: 28968779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization.
    Ding Y; Lei X; Liao B; Wu FX
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):446-457. PubMed ID: 34111017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
    Qu Q; Chen X; Ning B; Zhang X; Nie H; Zeng L; Chen H; Fu X
    Methods; 2023 Apr; 212():1-9. PubMed ID: 36813017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks.
    Li J; Li Z; Nie R; You Z; Bao W
    Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting miRNA-Disease Association Based on Improved Graph Regression.
    Li L; Gao Z; Zheng CH; Qi R; Wang YT; Ni JC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3604-3613. PubMed ID: 34757912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graph auto-encoder model for miRNA-disease associations prediction.
    Li Z; Li J; Nie R; You ZH; Bao W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 34293850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.