These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31500152)

  • 21. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction.
    Chen X; Xie D; Wang L; Zhao Q; You ZH; Liu H
    Bioinformatics; 2018 Sep; 34(18):3178-3186. PubMed ID: 29701758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.
    Li L; Wang YT; Ji CM; Zheng CH; Ni JC; Su YS
    PLoS Comput Biol; 2021 Dec; 17(12):e1009655. PubMed ID: 34890410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-disease association prediction by matrix tri-factorization.
    Li H; Guo Y; Cai M; Li L
    BMC Genomics; 2020 Nov; 21(Suppl 10):617. PubMed ID: 33208088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities.
    Wang L; You ZH; Chen X; Li YM; Dong YN; Li LP; Zheng K
    PLoS Comput Biol; 2019 Mar; 15(3):e1006865. PubMed ID: 30917115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MAMDA: Inferring microRNA-Disease associations with manifold alignment.
    Yan F; Zheng Y; Jia W; Hou S; Xiao R
    Comput Biol Med; 2019 Jul; 110():156-163. PubMed ID: 31154259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
    Chen X; Huang L
    PLoS Comput Biol; 2017 Dec; 13(12):e1005912. PubMed ID: 29253885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring disease-associated microRNAs in heterogeneous networks with node attributes.
    Xuan P; Shen T; Wang X; Zhang T; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Sep; ():. PubMed ID: 30281474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Potential Associations Between MicroRNA and Disease Based on Bayesian Probabilistic Matrix Factorization Model.
    Mao G; Wang SL; Zhang W
    J Comput Biol; 2019 Sep; 26(9):1030-1039. PubMed ID: 31246500
    [No Abstract]   [Full Text] [Related]  

  • 29. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNMDA: A novel method for predicting microRNA-disease associations based on sparse neighbourhood.
    Qu Y; Zhang H; Liang C; Ding P; Luo J
    J Cell Mol Med; 2018 Oct; 22(10):5109-5120. PubMed ID: 30030889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder.
    Zhang L; Chen X; Yin J
    Cells; 2019 Sep; 8(9):. PubMed ID: 31489920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting MiRNA-Disease Association by Latent Feature Extraction with Positive Samples.
    Che K; Guo M; Wang C; Liu X; Chen X
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30682853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-network sparse graph regularized matrix factorization for predicting miRNA-disease associations.
    Gao MM; Cui Z; Gao YL; Liu JX; Zheng CH
    Mol Omics; 2019 Apr; 15(2):130-137. PubMed ID: 30723850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder.
    Liu W; Lin H; Huang L; Peng L; Tang T; Zhao Q; Yang L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RBMMMDA: predicting multiple types of disease-microRNA associations.
    Chen X; Yan CC; Zhang X; Li Z; Deng L; Zhang Y; Dai Q
    Sci Rep; 2015 Sep; 5():13877. PubMed ID: 26347258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction.
    Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W
    Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction.
    Xuan P; Wang D; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34634106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of microRNA-disease associations based on distance correlation set.
    Zhao H; Kuang L; Wang L; Ping P; Xuan Z; Pei T; Wu Z
    BMC Bioinformatics; 2018 Apr; 19(1):141. PubMed ID: 29665774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HNMDA: heterogeneous network-based miRNA-disease association prediction.
    Peng LH; Sun CN; Guan NN; Li JQ; Chen X
    Mol Genet Genomics; 2018 Aug; 293(4):983-995. PubMed ID: 29687157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.