BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31500174)

  • 1. Genomic Analysis of γ-Hexachlorocyclohexane-Degrading
    Kaminski MA; Sobczak A; Dziembowski A; Lipinski L
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500174
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive evolution of Sphingopyxis sp. MC4 conferred degradation potential for persistent β- and δ-Hexachlorocyclohexane (HCH) isomers.
    Sharma M; Singh DN; Uttam G; Sharma P; Meena SA; Verma AK; Negi RK
    J Hazard Mater; 2024 Jan; 461():132545. PubMed ID: 37757562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Organization of Sphingobium indicum B90A: An Archetypal Hexachlorocyclohexane (HCH) Degrading Genotype.
    Verma H; Bajaj A; Kumar R; Kaur J; Anand S; Nayyar N; Puri A; Singh Y; Khurana JP; Lal R
    Genome Biol Evol; 2017 Sep; 9(9):2191-2197. PubMed ID: 28922869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingopyxis lindanitolerans sp. nov. strain WS5A3p
    Kaminski MA; Sobczak A; Spolnik G; Danikiewicz W; Dziembowski A; Lipinski L
    Int J Syst Evol Microbiol; 2018 Dec; 68(12):3935-3941. PubMed ID: 30394866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains.
    Pearce SL; Oakeshott JG; Pandey G
    G3 (Bethesda); 2015 Apr; 5(6):1081-94. PubMed ID: 25850427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways.
    Verma H; Kumar R; Oldach P; Sangwan N; Khurana JP; Gilbert JA; Lal R
    BMC Genomics; 2014 Nov; 15(1):1014. PubMed ID: 25418849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic Arabidopsis thaliana plants expressing bacterial γ-hexachlorocyclohexane dehydrochlorinase LinA.
    Deng W; Takada Y; Nanasato Y; Kishida K; Stari L; Ohtsubo Y; Tabei Y; Watanabe M; Nagata Y
    BMC Biotechnol; 2024 Jun; 24(1):42. PubMed ID: 38898480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons from the genomes of lindane-degrading sphingomonads.
    Nagata Y; Kato H; Ohtsubo Y; Tsuda M
    Environ Microbiol Rep; 2019 Oct; 11(5):630-644. PubMed ID: 31063253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium.
    Nagata Y; Natsui S; Endo R; Ohtsubo Y; Ichikawa N; Ankai A; Oguchi A; Fukui S; Fujita N; Tsuda M
    Enzyme Microb Technol; 2011 Dec; 49(6-7):499-508. PubMed ID: 22142724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Analysis of the Phylogenetic and Physiological Characteristics of Sphingobium indicum B90A: A Hexachlorocyclohexane-Degrading Bacterium.
    Kaur J; Verma H; Kaur J; Lata P; Dhingra GG; Lal R
    Curr Microbiol; 2024 Jun; 81(8):233. PubMed ID: 38904756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion sequence-based cassette PCR: cultivation-independent isolation of gamma-hexachlorocyclohexane-degrading genes from soil DNA.
    Fuchu G; Ohtsubo Y; Ito M; Miyazaki R; Ono A; Nagata Y; Tsuda M
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):627-32. PubMed ID: 18425509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of
    Yang F; Feng H; Massey IY; Huang F; Guo J; Zhang X
    Biomed Res Int; 2020; 2020():5849123. PubMed ID: 32596333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis.
    Nagata Y; Endo R; Ito M; Ohtsubo Y; Tsuda M
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):741-52. PubMed ID: 17634937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics of Sphingopyxis spp. unravelled functional attributes.
    Verma H; Dhingra GG; Sharma M; Gupta V; Negi RK; Singh Y; Lal R
    Genomics; 2020 Mar; 112(2):1956-1969. PubMed ID: 31740292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γ-hexachlorocyclohexane.
    Yang C; Yu H; Jiang H; Qiao C; Liu R
    J Basic Microbiol; 2016 Jul; 56(7):820-6. PubMed ID: 26648050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data.
    Sangwan N; Verma H; Kumar R; Negi V; Lax S; Khurana P; Khurana JP; Gilbert JA; Lal R
    ISME J; 2014 Feb; 8(2):398-408. PubMed ID: 24030592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation.
    Nandavaram A; Sagar AL; Madikonda AK; Siddavattam D
    Rev Environ Health; 2016 Mar; 31(1):57-61. PubMed ID: 26953700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome evolution related to γ-hexachlorocyclohexane metabolic function in the soil microbial population.
    Kato H; Su L; Tanaka A; Katsu H; Ohtsubo Y; Otsuka S; Senoo K; Nagata Y
    Biosci Biotechnol Biochem; 2022 May; 86(6):800-809. PubMed ID: 35298590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.
    Phillips TM; Seech AG; Lee H; Trevors JT
    Biodegradation; 2005 Aug; 16(4):363-92. PubMed ID: 15865341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil.
    Verma H; Rani P; Kumar Singh A; Kumar R; Dwivedi V; Negi V; Lal R
    Int J Syst Evol Microbiol; 2015 Oct; 65(10):3720-3726. PubMed ID: 26219279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.