BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 31500208)

  • 1. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments.
    Giani M; Garbayo I; Vílchez C; Martínez-Espinosa RM
    Mar Drugs; 2019 Sep; 17(9):. PubMed ID: 31500208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haloarchaea: A Promising Biosource for Carotenoid Production.
    Rodrigo-Baños M; Montero Z; Torregrosa-Crespo J; Garbayo I; Vílchez C; Martínez-Espinosa RM
    Adv Exp Med Biol; 2021; 1261():165-174. PubMed ID: 33783738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoids from Haloarchaea and Their Potential in Biotechnology.
    Rodrigo-Baños M; Garbayo I; Vílchez C; Bonete MJ; Martínez-Espinosa RM
    Mar Drugs; 2015 Aug; 13(9):5508-32. PubMed ID: 26308012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering Pathways for Carotenogenesis in Haloarchaea.
    Giani M; Miralles-Robledillo JM; Peiró G; Pire C; Martínez-Espinosa RM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies.
    Giani M; Pire C; Martínez-Espinosa RM
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes.
    Yim KJ; Kwon J; Cha IT; Oh KS; Song HS; Lee HW; Rhee JK; Song EJ; Rho JR; Seo ML; Choi JS; Choi HJ; Lee SJ; Nam YD; Roh SW
    Sci Rep; 2015 Nov; 5():16425. PubMed ID: 26553382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest.
    Serrano S; Mendo S; Caetano T
    Res Microbiol; 2022; 173(3):103919. PubMed ID: 34942349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential.
    Grivard A; Goubet I; Duarte Filho LMS; Thiéry V; Chevalier S; de Oliveira-Junior RG; El Aouad N; Guedes da Silva Almeida JR; Sitarek P; Quintans-Junior LJ; Grougnet R; Agogué H; Picot L
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.
    Calegari-Santos R; Diogo RA; Fontana JD; Bonfim TM
    Curr Microbiol; 2016 May; 72(5):641-51. PubMed ID: 26750123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypersaline environments as natural sources of microbes with potential applications in biotechnology: The case of solar evaporation systems to produce salt in Alicante County (Spain).
    Martínez GM; Pire C; Martínez-Espinosa RM
    Curr Res Microb Sci; 2022; 3():100136. PubMed ID: 35909606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Taxonomic Characterization of Novel Haloarchaeal Isolates From Indian Solar Saltern: A Brief Review on Distribution of Bacteriorhodopsins and V-Type ATPases in Haloarchaea.
    Verma DK; Chaudhary C; Singh L; Sidhu C; Siddhardha B; Prasad SE; Thakur KG
    Front Microbiol; 2020; 11():554927. PubMed ID: 33362726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid characterization, fatty acid profiles, and antioxidant activities of haloarchaeal extracts.
    Kesbiç FI; Gültepe N
    J Basic Microbiol; 2024 Feb; 64(2):e2300330. PubMed ID: 37847881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and extraction of carotenoids produced by microorganisms.
    Mussagy CU; Winterburn J; Santos-Ebinuma VC; Pereira JFB
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1095-1114. PubMed ID: 30560452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoids as a Protection Mechanism against Oxidative Stress in
    Giani M; Martínez-Espinosa RM
    Antioxidants (Basel); 2020 Oct; 9(11):. PubMed ID: 33137984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications.
    Moopantakath J; Imchen M; Anju VT; Busi S; Dyavaiah M; Martínez-Espinosa RM; Kumavath R
    Front Microbiol; 2023; 14():1113540. PubMed ID: 37065149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of lipophilic bioproduct portfolio from bioreactor samples of extreme halophilic archaea with HPLC-MS/MS.
    Lorantfy B; Renkecz T; Koch C; Horvai G; Lendl B; Herwig C
    Anal Bioanal Chem; 2014 Apr; 406(9-10):2421-32. PubMed ID: 24510212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis.
    Peck RF; Graham SM; Gregory AM
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30373756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering towards biotechnological production of carotenoids in microorganisms.
    Lee PC; Schmidt-Dannert C
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):1-11. PubMed ID: 12382037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from
    Delgado-Garcia M; Gómez-Secundino O; Rodríguez JA; Mateos-Díaz JC; Muller-Santos M; Aguilar CN; Camacho-Ruiz RM
    Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica.
    Yang Y; Yatsunami R; Ando A; Miyoko N; Fukui T; Takaichi S; Nakamura S
    J Bacteriol; 2015 May; 197(9):1614-23. PubMed ID: 25712483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.