BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31500251)

  • 21. Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation.
    Jin H; Matsuhisa N; Lee S; Abbas M; Yokota T; Someya T
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
    Wu X; Han Y; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23007-23016. PubMed ID: 28636322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement.
    Park YG; Min H; Kim H; Zhexembekova A; Lee CY; Park JU
    Nano Lett; 2019 Aug; 19(8):4866-4872. PubMed ID: 30983359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics.
    Yang Z; Zhai Z; Song Z; Wu Y; Liang J; Shan Y; Zheng J; Liang H; Jiang H
    Adv Mater; 2020 Mar; 32(10):e1907495. PubMed ID: 31984556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printing the Ultra-Long Ag Nanowires Inks onto the Flexible Textile Substrate for Stretchable Electronics.
    Ke SH; Xue QW; Pang CY; Guo PW; Yao WJ; Zhu HP; Wu W
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052576
    [No Abstract]   [Full Text] [Related]  

  • 26. Printed Flexible Thermoelectric Nanocomposites Based on Carbon Nanotubes and Polyaniline.
    Słoma M; Głód MA; Wałpuski B
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wearable and Washable Conductors for Active Textiles.
    Le Floch P; Yao X; Liu Q; Wang Z; Nian G; Sun Y; Jia L; Suo Z
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25542-25552. PubMed ID: 28696090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.
    Zhang H; Qiao Y; Lu Z
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32317-32323. PubMed ID: 27933835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of a Textile-Based Wearable Blood Leakage Sensor Using Screen-Offset Printing.
    Nomura KI; Horii Y; Kanazawa S; Kusaka Y; Ushijima H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a Flex and Stretchy Conductive Cotton Fabric Via Flat Screen Printing of PEDOT:PSS/PDMS Conductive Polymer Composite.
    Tseghai GB; Malengier B; Fante KA; Nigusse AB; Van Langenhove L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.
    Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Textile Display for Electronic and Brain-Interfaced Communications.
    Zhang Z; Cui L; Shi X; Tian X; Wang D; Gu C; Chen E; Cheng X; Xu Y; Hu Y; Zhang J; Zhou L; Fong HH; Ma P; Jiang G; Sun X; Zhang B; Peng H
    Adv Mater; 2018 May; 30(18):e1800323. PubMed ID: 29572973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Surface Electromyography Using Stretchable Screen-Printed Textile Electrodes.
    Spanu A; Botter A; Zedda A; Cerone GL; Bonfiglio A; Pani D
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1661-1668. PubMed ID: 34398755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Conductive Fiber with Waterproof and Self-Cleaning Properties for Textile Electronics.
    Choi B; Lee J; Han H; Woo J; Park K; Seo J; Lee T
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36094-36101. PubMed ID: 30222308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stretchable Biofuel Cells as Wearable Textile-based Self-Powered Sensors.
    Jeerapan I; Sempionatto JR; Pavinatto A; You JM; Wang J
    J Mater Chem A Mater; 2016 Dec; 4(47):18342-18353. PubMed ID: 28439415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber Sensors.
    Yu L; Yeo JC; Soon RH; Yeo T; Lee HH; Lim CT
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12773-12780. PubMed ID: 29582649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roll to plate printed stretchable silver electrode using single walled carbon nanotube on elastomeric substrate.
    Jung M; Noh J; Kim J; Kim D; Cho G
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5620-3. PubMed ID: 23882805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Carbon-Based Composites for Elastic Heaters and Effects of Hot Pressing in Thermal Transfer Process on Thermal and Electrical Properties.
    Raczyński T; Janczak D; Szałapak J; Walter P; Jakubowska M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes.
    Lee HS; Jo Y; Joo JH; Woo K; Zhong Z; Jung S; Lee SY; Choi Y; Jeong S
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12622-12631. PubMed ID: 30855933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers.
    Koshi T; Nomura KI; Yoshida M
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32466466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.