These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31500251)

  • 41. Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes.
    Lee HS; Jo Y; Joo JH; Woo K; Zhong Z; Jung S; Lee SY; Choi Y; Jeong S
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12622-12631. PubMed ID: 30855933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers.
    Koshi T; Nomura KI; Yoshida M
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32466466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Textile-Based Stretchable Multi-Ion Potentiometric Sensor.
    Parrilla M; Cánovas R; Jeerapan I; Andrade FJ; Wang J
    Adv Healthc Mater; 2016 May; 5(9):996-1001. PubMed ID: 26959998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Textile-Friendly Interconnection between Wearable Measurement Instrumentation and Sensorized Garments-Initial Performance Evaluation for Electrocardiogram Recordings.
    Seoane F; Soroudi A; Lu K; Nilsson D; Nilsson M; Abtahi F; Skrifvars M
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of the Heat Transfer Process on the Electrical and Mechanical Properties of Flexible Silver Conductors on Textiles.
    Raczyński T; Janczak D; Szałapak J; Lepak-Kuc S; Baraniecki D; Muszyńska M; Kądziela A; Wójkowska K; Krzemiński J; Jakubowska M
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bright Stretchable Alternating Current Electroluminescent Displays Based on High Permittivity Composites.
    Stauffer F; Tybrandt K
    Adv Mater; 2016 Sep; 28(33):7200-3. PubMed ID: 27299506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.
    Li CY; Liao YC
    ACS Appl Mater Interfaces; 2016 May; 8(18):11868-74. PubMed ID: 27082455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Screen Printing of pH-Responsive Dye to Textile.
    Gorjanc M; Gerl A; Kert M
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fully Printable and Reconfigurable Hufu-type Electroluminescent Devices for Visualized Encryption.
    Luo Z; Chen W; Lai M; Shi S; Chen P; Yang X; Chen Z; Wang B; Zhang Y; Zhou X
    Adv Mater; 2024 May; 36(21):e2313909. PubMed ID: 38349232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials.
    Eutionnat-Diffo PA; Chen Y; Guan J; Cayla A; Campagne C; Nierstrasz V
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermally Laminated Lighting Textile for Wearable Displays with High Durability.
    Lin Y; Chen X; Lu Q; Wang J; Ding C; Liu F; Kong D; Yuan W; Su W; Cui Z
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5931-5941. PubMed ID: 36688806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle-Stretchable Conductive Network.
    Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Matsui H; Kumaki D; Nishikawa T; Shiba T; Sunaga T; Tokito S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35282-35290. PubMed ID: 32649823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. All-Printed Flexible and Stretchable Electronics.
    Mohammed MG; Kramer R
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28247998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly stretchable electroluminescent device based on copper nanowires electrode.
    Tran P; Tran NH; Lee JH
    Sci Rep; 2022 May; 12(1):8967. PubMed ID: 35624312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PEDOT:PSS "Wires" Printed on Textile for Wearable Electronics.
    Guo Y; Otley MT; Li M; Zhang X; Sinha SK; Treich GM; Sotzing GA
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26998-27005. PubMed ID: 27632390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated 3D printing of flexible electroluminescent devices and soft robots.
    Zhang P; Lei IM; Chen G; Lin J; Chen X; Zhang J; Cai C; Liang X; Liu J
    Nat Commun; 2022 Aug; 13(1):4775. PubMed ID: 35999212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemically driven printed textile sensors based on graphene and carbon nanotubes.
    Skrzetuska E; Puchalski M; Krucińska I
    Sensors (Basel); 2014 Sep; 14(9):16816-28. PubMed ID: 25211197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems.
    Deng HT; Wen DL; Feng T; Wang YL; Zhang XR; Huang P; Zhang XS
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39681-39700. PubMed ID: 36006298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal-Organic Decomposition Silver Electrodes.
    Kim I; Ju B; Zhou Y; Li BM; Jur JS
    ACS Appl Mater Interfaces; 2021 May; 13(20):24081-24094. PubMed ID: 33988966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.