These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 31500333)

  • 1. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm].
    Luo W; Du YZ; Zhang HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning].
    Cheng SX; Kong WW; Zhang C; Liu F; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Near-Infrared Hyperspectral Imaging with Machine Learning Methods to Identify Geographical Origins of Dry Narrow-Leaved Oleaster (
    Gao P; Xu W; Yan T; Zhang C; Lv X; He Y
    Foods; 2019 Nov; 8(12):. PubMed ID: 31783592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Identification of varieties of black bean using ground based hyperspectral imaging].
    Zhang C; Liu F; Zhang HL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning.
    Jin B; Zhang C; Jia L; Tang Q; Gao L; Zhao G; Qi H
    ACS Omega; 2022 Feb; 7(6):4735-4749. PubMed ID: 35187294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.
    Zhang C; Liu F; He Y
    Sci Rep; 2018 Feb; 8(1):2166. PubMed ID: 29391427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Destructive and Rapid Variety Discrimination and Visualization of Single Grape Seed Using Near-Infrared Hyperspectral Imaging Technique and Multivariate Analysis.
    Zhao Y; Zhang C; Zhu S; Gao P; Feng L; He Y
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29867071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.
    Yin W; Zhang C; Zhu H; Zhao Y; He Y
    PLoS One; 2017; 12(7):e0180534. PubMed ID: 28704423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rapid identification of Coix seed varieties by near infrared spectroscopy].
    Liu X; Mao DZ; Wang ZW; Yang YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1259-63. PubMed ID: 25095418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning.
    Ye W; Yan T; Zhang C; Duan L; Chen W; Song H; Zhang Y; Xu W; Gao P
    Foods; 2022 May; 11(11):. PubMed ID: 35681359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds.
    Zhang X; Liu F; He Y; Li X
    Sensors (Basel); 2012 Dec; 12(12):17234-46. PubMed ID: 23235456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products.
    Zhu H; Gowen A; Feng H; Yu K; Xu JL
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging.
    Zhang C; Wu W; Zhou L; Cheng H; Ye X; He Y
    Food Chem; 2020 Jul; 319():126536. PubMed ID: 32146292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturity Stage Discrimination of
    Jiang H; Hu Y; Jiang X; Zhou H
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion.
    Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W
    Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.