BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 31500396)

  • 1. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology.
    Ho HY; Cheng ML; Chiu DT
    Free Radic Res; 2014 Sep; 48(9):1028-48. PubMed ID: 24720642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.
    Stanton RC
    IUBMB Life; 2012 May; 64(5):362-9. PubMed ID: 22431005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose 6-phosphate dehydrogenase and the kidney.
    Spencer NY; Stanton RC
    Curr Opin Nephrol Hypertens; 2017 Jan; 26(1):43-49. PubMed ID: 27755120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G6PD: A hub for metabolic reprogramming and redox signaling in cancer.
    Yang HC; Stern A; Chiu DT
    Biomed J; 2021 Jun; 44(3):285-292. PubMed ID: 33097441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis.
    Siler U; Romao S; Tejera E; Pastukhov O; Kuzmenko E; Valencia RG; Meda Spaccamela V; Belohradsky BH; Speer O; Schmugge M; Kohne E; Hoenig M; Freihorst J; Schulz AS; Reichenbach J
    J Allergy Clin Immunol; 2017 Jan; 139(1):212-219.e3. PubMed ID: 27458052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts.
    Ho HY; Cheng ML; Lu FJ; Chou YH; Stern A; Liang CM; Chiu DT
    Free Radic Biol Med; 2000 Jul; 29(2):156-69. PubMed ID: 10980404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G6PD--an old bottle with new wine.
    Ho HY; Cheng ML; Chiu DT
    Chang Gung Med J; 2005 Sep; 28(9):606-12. PubMed ID: 16323551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.
    Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D
    EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension.
    Hashimoto R; Gupte S
    Adv Exp Med Biol; 2017; 967():47-55. PubMed ID: 29047080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis.
    Chen PH; Tjong WY; Yang HC; Liu HY; Stern A; Chiu DT
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review).
    Li R; Wang W; Yang Y; Gu C
    Oncol Rep; 2020 Dec; 44(6):2325-2336. PubMed ID: 33125150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity.
    Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT
    J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.