BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1163 related articles for article (PubMed ID: 31500559)

  • 1. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.).
    Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y
    BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.).
    Liu Y; Yi Q; Hou X; Hu Y; Li Y; Yu G; Liu H; Zhang J; Huang Y
    Mol Genet Genomics; 2020 Jan; 295(1):121-133. PubMed ID: 31511973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic basis of grain yield heterosis in an "immortalized F₂" maize population.
    Guo T; Yang N; Tong H; Pan Q; Yang X; Tang J; Wang J; Li J; Yan J
    Theor Appl Genet; 2014 Oct; 127(10):2149-58. PubMed ID: 25104328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population.
    Tang J; Yan J; Ma X; Teng W; Wu W; Dai J; Dhillon BS; Melchinger AE; Li J
    Theor Appl Genet; 2010 Jan; 120(2):333-40. PubMed ID: 19936698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton.
    Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S
    BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.
    Jiang L; Ge M; Zhao H; Zhang T
    PLoS One; 2015; 10(4):e0124779. PubMed ID: 25919458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.).
    Larièpe A; Mangin B; Jasson S; Combes V; Dumas F; Jamin P; Lariagon C; Jolivot D; Madur D; Fiévet J; Gallais A; Dubreuil P; Charcosset A; Moreau L
    Genetics; 2012 Feb; 190(2):795-811. PubMed ID: 22135356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic dissection of heterosis of indica-japonica by introgression line, recombinant inbred line and their testcross populations.
    Yang W; Zhang F; Zafar S; Wang J; Lu H; Naveed S; Lou J; Xu J
    Sci Rep; 2021 May; 11(1):10265. PubMed ID: 33986411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III.
    Li H; Yang Q; Fan N; Zhang M; Zhai H; Ni Z; Zhang Y
    BMC Genet; 2017 Apr; 18(1):36. PubMed ID: 28415964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
    Huo D; Ning Q; Shen X; Liu L; Zhang Z
    PLoS One; 2016; 11(5):e0155506. PubMed ID: 27176215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High congruency of QTL positions for heterosis of grain yield in three crosses of maize.
    Schön CC; Dhillon BS; Utz HF; Melchinger AE
    Theor Appl Genet; 2010 Jan; 120(2):321-32. PubMed ID: 19911156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton.
    Ma L; Wang Y; Ijaz B; Hua J
    Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.
    Zhang Z; Wu X; Shi C; Wang R; Li S; Wang Z; Liu Z; Xue Y; Tang G; Tang J
    Mol Genet Genomics; 2016 Feb; 291(1):437-54. PubMed ID: 26420507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population.
    Lu H; Romero-Severson J; Bernardo R
    Theor Appl Genet; 2003 Aug; 107(3):494-502. PubMed ID: 12759730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of quantitative trait loci for ear row number in F2 populations of maize.
    Yang C; Liu J; Rong TZ
    Genet Mol Res; 2015 Nov; 14(4):14229-38. PubMed ID: 26600480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of QTL for maize grain yield and kernel-related traits.
    Yang C; Zhang L; Jia A; Rong T
    J Genet; 2016 Jun; 95(2):239-47. PubMed ID: 27350665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids.
    Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J
    G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize.
    Li D; Zhou Z; Lu X; Jiang Y; Li G; Li J; Wang H; Chen S; Li X; Würschum T; Reif JC; Xu S; Li M; Liu W
    Front Plant Sci; 2021; 12():774478. PubMed ID: 34917109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize.
    Zhao Y; Su C
    Sci Rep; 2019 Nov; 9(1):16112. PubMed ID: 31695075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting Heterosis During the Ear Inflorescence Development Stage in Maize via a Metabolomics-based Analysis.
    Shi X; Zhang X; Shi D; Zhang X; Li W; Tang J
    Sci Rep; 2019 Jan; 9(1):212. PubMed ID: 30659214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.