BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31500632)

  • 1. CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition.
    Lu Y; Dong B; Xu F; Xu Y; Pan J; Song J; Zhang J; Huang Y; Xue W
    Cell Commun Signal; 2019 Sep; 17(1):118. PubMed ID: 31500632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer.
    Ding G; Fang J; Tong S; Qu L; Jiang H; Ding Q; Liu J
    Prostate; 2015 Jun; 75(9):957-68. PubMed ID: 25728945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-κB-dependent activation of snail and epithelial mesenchymal transition.
    Feng M; Feng J; Chen W; Wang W; Wu X; Zhang J; Xu F; Lai M
    Mol Cancer; 2016 Dec; 15(1):77. PubMed ID: 27912767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipocalin-2 negatively regulates epithelial-mesenchymal transition through matrix metalloprotease-2 downregulation in gastric cancer.
    Nishimura S; Yamamoto Y; Sugimoto A; Kushiyama S; Togano S; Kuroda K; Okuno T; Kasashima H; Ohira M; Maeda K; Yashiro M
    Gastric Cancer; 2022 Sep; 25(5):850-861. PubMed ID: 35705840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis.
    Ören B; Urosevic J; Mertens C; Mora J; Guiu M; Gomis RR; Weigert A; Schmid T; Grein S; Brüne B; Jung M
    J Pathol; 2016 Jul; 239(3):274-85. PubMed ID: 27038000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation.
    Kuo PL; Shen KH; Hung SH; Hsu YL
    Carcinogenesis; 2012 Dec; 33(12):2477-87. PubMed ID: 23027620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling.
    Wang N; Liu W; Zheng Y; Wang S; Yang B; Li M; Song J; Zhang F; Zhang X; Wang Q; Wang Z
    Cell Death Dis; 2018 Aug; 9(9):880. PubMed ID: 30158589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis.
    Zhao Y; Jiang J; Zhou P; Deng K; Liu Z; Yang M; Yang X; Li J; Li R; Xia J
    Biochem Pharmacol; 2024 Apr; 222():116120. PubMed ID: 38461905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial-stromal communication via CXCL1-CXCR2 interaction stimulates growth of ovarian cancer cells through p38 activation.
    Park GY; Pathak HB; Godwin AK; Kwon Y
    Cell Oncol (Dordr); 2021 Feb; 44(1):77-92. PubMed ID: 32910411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipocalin 2 negatively regulates cell proliferation and epithelial to mesenchymal transition through changing metabolic gene expression in colorectal cancer.
    Kim SL; Lee ST; Min IS; Park YR; Lee JH; Kim DG; Kim SW
    Cancer Sci; 2017 Nov; 108(11):2176-2186. PubMed ID: 28859238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipocalin 2 promotes breast cancer progression.
    Yang J; Bielenberg DR; Rodig SJ; Doiron R; Clifton MC; Kung AL; Strong RK; Zurakowski D; Moses MA
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3913-8. PubMed ID: 19237579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway.
    Ogawa K; Lin Q; Li L; Bai X; Chen X; Chen H; Kong R; Wang Y; Zhu H; He F; Xu Q; Liu L; Li M; Zhang S; Nagaoka K; Carlson R; Safran H; Charpentier K; Sun B; Wands J; Dong X
    J Hematol Oncol; 2019 Dec; 12(1):144. PubMed ID: 31888763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonic hedgehog and androgen signaling in tumor and stromal compartments drives epithelial-mesenchymal transition in prostate cancer.
    Yamamichi F; Shigemura K; Behnsawy HM; Meligy FY; Huang WC; Li X; Yamanaka K; Hanioka K; Miyake H; Tanaka K; Kawabata M; Shirakawa T; Fujisawa M
    Scand J Urol; 2014 Dec; 48(6):523-32. PubMed ID: 25356787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells.
    Tung MC; Hsieh SC; Yang SF; Cheng CW; Tsai RT; Wang SC; Huang MH; Hsieh YH
    Prostate; 2013 Sep; 73(12):1281-90. PubMed ID: 23775308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer.
    Miyake M; Lawton A; Goodison S; Urquidi V; Rosser CJ
    Pathol Res Pract; 2014 Feb; 210(2):74-8. PubMed ID: 24252309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melittin inhibits tumor cell migration and enhances cisplatin sensitivity by suppressing IL-17 signaling pathway gene LCN2 in castration-resistant prostate cancer.
    Yan R; Dai W; Mao Y; Yu G; Li W; Shu M; Xu B
    Prostate; 2023 Nov; 83(15):1430-1445. PubMed ID: 37517867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipocalin-2 negatively modulates the epithelial-to-mesenchymal transition in hepatocellular carcinoma through the epidermal growth factor (TGF-beta1)/Lcn2/Twist1 pathway.
    Wang YP; Yu GR; Lee MJ; Lee SY; Chu IS; Leem SH; Kim DG
    Hepatology; 2013 Oct; 58(4):1349-61. PubMed ID: 23696034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity.
    Ding G; Wang J; Feng C; Jiang H; Xu J; Ding Q
    Oncotarget; 2016 Sep; 7(39):64309-64317. PubMed ID: 27602760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.
    Wu W; Yang Q; Fung KM; Humphreys MR; Brame LS; Cao A; Fang YT; Shih PT; Kropp BP; Lin HK
    Mol Cell Endocrinol; 2014 Mar; 383(1-2):69-79. PubMed ID: 24296312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis.
    Chien MH; Lin YW; Wen YC; Yang YC; Hsiao M; Chang JL; Huang HC; Lee WJ
    J Exp Clin Cancer Res; 2019 Jun; 38(1):246. PubMed ID: 31182131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.