BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31500637)

  • 41. [Role of the Hippo pathway in cell proliferation and organ size control. Disorders of the pathway in cancer diseases].
    Rybarczyk A; Wierzbicki P; Kowalczyk A; Kmieć Z
    Postepy Hig Med Dosw (Online); 2014 May; 68():503-15. PubMed ID: 24864102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Drosophila F-box protein Slimb controls dSmurf protein turnover to regulate the Hippo pathway.
    Hu L; Wang P; Zhao R; Li S; Wang F; Li C; Cao L; Wu S
    Biochem Biophys Res Commun; 2017 Jan; 482(2):317-322. PubMed ID: 27856247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of CD150-SH2D1A association in CD150 signaling in Hodgkin's lymphoma cell lines.
    Yurchenko MY; Kashuba EV; Shlapatska LM; Sivkovich SA; Sidorenko SP
    Exp Oncol; 2005 Mar; 27(1):24-30. PubMed ID: 15812353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hippo signaling: a hub of growth control, tumor suppression and pluripotency maintenance.
    Yin M; Zhang L
    J Genet Genomics; 2011 Oct; 38(10):471-81. PubMed ID: 22035868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ubiquitin E3 ligase dSmurf is essential for Wts protein turnover and Hippo signaling.
    Cao L; Wang P; Gao Y; Lin X; Wang F; Wu S
    Biochem Biophys Res Commun; 2014 Nov; 454(1):167-71. PubMed ID: 25450375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling.
    Ariyoshi M; Schwabe JW
    Genes Dev; 2003 Aug; 17(15):1909-20. PubMed ID: 12897056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Hippo pathway regulates Wnt/beta-catenin signaling.
    Varelas X; Miller BW; Sopko R; Song S; Gregorieff A; Fellouse FA; Sakuma R; Pawson T; Hunziker W; McNeill H; Wrana JL; Attisano L
    Dev Cell; 2010 Apr; 18(4):579-91. PubMed ID: 20412773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. VEPH1 suppresses the progression of gastric cancer by regulating the Hippo-YAP signalling pathway.
    Nie X; Zhou Z; Chen Y; Chen S; Chen Y; Lei J; Wu X; He S
    Dig Liver Dis; 2024 Jan; 56(1):187-197. PubMed ID: 37244789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dampened VEPH1 activates mTORC1 signaling by weakening the TSC1/TSC2 association in hepatocellular carcinoma.
    Dong P; Wang X; Liu L; Tang W; Ma L; Zeng W; Sun S; Zhang L; Zhang N; Shen X; Janssen HLA; Dong L; Zhang S; Chen S
    J Hepatol; 2020 Dec; 73(6):1446-1459. PubMed ID: 32610114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Statement of Retraction: Overexpressed VEPH1 inhibits epithelial-mesenchymal transition, invasion, and migration of human cutaneous melanoma cells through inactivating the TGF-β signaling pathway.
    Cell Cycle; 2022 Jul; 21(13):1435. PubMed ID: 35451923
    [No Abstract]   [Full Text] [Related]  

  • 51. Overview of Transcriptomic Research on Type 2 Diabetes: Challenges and Perspectives.
    Tonyan ZN; Nasykhova YA; Danilova MM; Barbitoff YA; Changalidi AI; Mikhailova AA; Glotov AS
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885959
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (
    D'Alessio S; Cheng H; Eaton L; Kraev I; Pamenter ME; Lange S
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing.
    Zhao Z; Zhang D; Yang F; Xu M; Zhao S; Pan T; Liu C; Liu Y; Wu Q; Tu Q; Zhou P; Li R; Kang J; Zhu L; Gao F; Wang Y; Xu Z
    Cell Res; 2022 May; 32(5):425-436. PubMed ID: 35273378
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MicroRNA miR-23b-3p promotes osteosarcoma by targeting ventricular zone expressed PH domain-containing 1 (VEPH1)/phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway.
    Fan L; Cao X; Lei Y
    Bioengineered; 2021 Dec; 12(2):12568-12582. PubMed ID: 34903122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release.
    Khurana N; Pulsipher A; Ghandehari H; Alt JA
    J Control Release; 2021 Feb; 330():878-888. PubMed ID: 33144181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ventricular Zone Expressed PH Domain Containing 1 (VEPH1): an adaptor protein capable of modulating multiple signaling transduction pathways during normal and pathological development.
    Brown TJ; Kollara A; Shathasivam P; Ringuette MJ
    Cell Commun Signal; 2019 Sep; 17(1):116. PubMed ID: 31500637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling.
    Shathasivam P; Kollara A; Ringuette MJ; Virtanen C; Wrana JL; Brown TJ
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):E3000-9. PubMed ID: 26039994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells.
    Kollara A; Burt BD; Ringuette MJ; Brown TJ
    Cell Signal; 2023 Jun; 106():110634. PubMed ID: 36828346
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.