These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 31500660)

  • 1. A comparison of automatic cell identification methods for single-cell RNA sequencing data.
    Abdelaal T; Michielsen L; Cats D; Hoogduin D; Mei H; Reinders MJT; Mahfouz A
    Genome Biol; 2019 Sep; 20(1):194. PubMed ID: 31500660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data.
    Huang Y; Zhang P
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data.
    Huang Q; Liu Y; Du Y; Garmire LX
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.
    Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq.
    Sun X; Lin X; Li Z; Wu H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scTransSort: Transformers for Intelligent Annotation of Cell Types by Gene Embeddings.
    Jiao L; Wang G; Dai H; Li X; Wang S; Song T
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues.
    Pei G; Yan F; Simon LM; Dai Y; Jia P; Zhao Z
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):370-384. PubMed ID: 35470070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome.
    Ren T; Huang S; Liu Q; Wang G
    Comput Biol Med; 2023 Jan; 152():106409. PubMed ID: 36512878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PredGCN: a Pruning-enabled Gene-Cell Net for automatic cell annotation of single cell transcriptome data.
    Qi Q; Wang Y; Huang Y; Fan Y; Li X
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38924517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data.
    Xu J; Zhang A; Liu F; Chen L; Zhang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of classification in single cell atac-seq data with machine learning methods.
    Guo H; Yang Z; Jiang T; Liu S; Wang Y; Cui Z
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):249. PubMed ID: 36131234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaSTLe - Classification of single cells by transfer learning: Harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments.
    Lieberman Y; Rokach L; Shay T
    PLoS One; 2018; 13(10):e0205499. PubMed ID: 30304022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
    Diaz-Mejia JJ; Meng EC; Pico AR; MacParland SA; Ketela T; Pugh TJ; Bader GD; Morris JH
    F1000Res; 2019; 8():. PubMed ID: 31508207
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 27.